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Extending the Nash Solution to Choice Problems with Reference

Points∗

Peter Sudhölter† José M. Zarzuelo‡

Abstract

In 1985 Aumann axiomatized the Shapley NTU value by non-emptiness, efficiency, una-
nimity, scale covariance, conditional additivity, and independence of irrelevant alternatives.
We show that, when replacing unanimity by “unanimity for the grand coalition” and trans-
lation covariance, these axioms characterize the Nash solution on the the class of n-person
choice problems with reference points. A classical bargaining problem consists of a convex
feasible set that contains the disagreement point here called reference point. The feasible set
of a choice problem does not necessarily contain the reference point and may not be convex.
However, we assume that it satisfies some standard properties. Our result is robust so that
the characterization is still valid for many subclasses of choice problems, among those is the
class of classical bargaining problems. Moreover, we show that each of the employed axioms
– including independence of irrelevant alternatives – may be logically independent of the
remaining axioms.

Keywords: Bargaining problem, Nash set, Shapley NTU value

JEL codes: C71, C78

1 Introduction

A bargaining problem on a set N of n agents consists of a pair (S, d) where S ⊆ RN , the feasible

set, is a nonempty comprehensive set of utility profiles and d ∈ S is the disagreement point.

Nash (1950) characterized the Nash solution on the class of bargaining problems with convex

feasible sets by Pareto efficiency (EFF), equal treatment of equals, scale covariance (SCOV),

and independence of irrelevant alternatives (IIA). Bargaining problems may be regarded as

particular cooperative non transferable utility (NTU) games, and, hence, the Shapley NTU value
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(see Shapley (1969)) is a generalization of the Nash solution. Aumann (1985) characterized the

Shapley NTU value (on the class of NTU games with closed, non-leveled, and smooth feasible

sets) by non-emptiness (NE), EFF, conditional additivity (CADD), unanimity (UNA), SCOV,

and1 IIA. For n = 2, an NTU game is either a bargaining problem or a rationing problem, i.e., a

pair (S, c) where S is an aforementioned feasible set and c ∈ RN , the profile of reference utilities,

does not belong to S. For an extensive study of rationing problems and their Nash rationing

solutions see Mariotti and Villar (2005).

Many authors investigated generalizations of the Nash solution for bargaining problems with

non-convex feasible sets (see, e.g., Herrero (1989), Conley and Wilkie (1996), Zhou (1996),

Mariotti (1998), and Peters and Vermeulen (2010)). We consider both, bargaining problems

and rationing problems, and do not assume in general that a feasible set is convex.

Rubinstein and Zhou (1999) introduce “choice problems with reference points”, i.e., pairs (P, r)

where P is a set of feasible alternatives in some set X and r is a “reference point” in X. They

do not intend to, e.g., model conflicting interests in a bargaining problem, and a choice problem

may be a single decision maker problem in which various criteria play the role of the involved

bargainers. In contrast to these authors, we specify these conflicting interests explicitly by

considering the elements of P and r itself as utility profiles. Despite of these differences in

the interpretations, bargaining and rationing problems have the same structure: They consist

of a feasible set (of utility profiles) and a reference utility profile. Thus, we keep the name

and call a pair (P, r) where P ⊆ RN is a feasible set and r ∈ RN a choice problem (on N)

with reference point (r) as well. The Nash solution of a choice problem with reference point

(P, r) is the Shapley NTU value of the associated NTU game if P is non-leveled, smooth, and

convex: A Pareto efficient element x of P is a Shapley NTU value if and only if, up to some

natural scaling, it is the Shapley value of the transferable utility TU game that arises when

replacing P by the half-space determined by the supporting hyperplane through x. Hence, the

concept of Nash solution may be generalized to a choice problem (P, r) with a non-convex (but

still non-leveled and smooth) feasible set by replacing “supporting hyperplane” with “tangent

hyperplane” where necessary. We show that suitable versions of the axioms used by Aumann

may be used to characterize the aforementioned generalization of the Nash solution to several

classes of choice problems with reference points. The axiom UNA requires for NTU games that

the solution equally divides the available one unit to the players of S in the unanimity game

of any subcoalition S of N . Thus, the unique unanimity game that may be regarded as a

choice problem with reference point (in fact a bargaining problem) is the unanimity game of the

grand coalition N . Hence, UNA and SCOV on choice problems do not longer imply translation

covariance (TCOV) as in the case of NTU games. Thus, in our results TCOV is additionally

employed.

The paper is organized as follows. In Section 2 the necessary notation is provided, the definitions

are presented, and straightforward properties of the Nash solution are deduced or recalled. It is

also shown that the Nash solution of a uniformly p-smooth (in the sense of Maschler and Owen

(1992)) choice problem with reference point always exists.

1His additional axiom of ”Closure Invariance” is not relevant for NTU games with closed feasible sets.
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Section 3 is devoted to the axiomatization of the Nash solution on uniformly p-smooth choice

problems with reference points. It is shown that Aumann’s (1985) characterization of the NTU

Shapley value may be resembled: The Nash solution is characterized by NE, EFF, CADD, UNA,

SCOV, TCOV, and IIA (see Theorem 3.1). In Section 4 it is shown by means of examples that

each of the employed axioms is logically independent of the remaining six axioms.

Section 5 investigates the “robustness” of Theorem 3.1. It turns out that the characterization

still holds on many interesting classes of choice problems with reference points. Indeed the

result holds for many classes of choice problems with convex feasible sets; e.g., for the class of

classical bargaining problems with non-leveled smooth convex feasible sets, the Nash solution

is characterized by the first six axioms, i.e., IIA is not needed. Also it turns out that, if IIA is

slightly modified, the set of uniformly p-smooth choice problems may be replaced by the set of

p-smooth choice problems with a nonempty Nash solution. Finally, this section contains some

remarks about the logical independence of the axioms that are employed in the aforementioned

modifications of Theorem 3.1.

The appendix (Section 6) is devoted to show some technical results that are used in the preceding

sections. Namely, it is shown that for any point x of its boundary, any (uniformly) p-smooth

feasible set contains a convex (uniformly) p-smooth feasible set that contains x.

2 Preliminaries

For a finite set N we denote by RN the set of all real functions on N . So RN is the |N |-
dimensional Euclidean space. (Here and in the sequel, if D is a finite set, then |D| denotes the

cardinality of D.) For x, y ∈ RN let x ·y denote the scalar product, and we write x > y if xi > yi
for all i ∈ N . Moreover, we write x > y if x > y and x 6= y and we write x� y if xi > yi for all

i ∈ N . We denote RN+ = {x ∈ RN | x > 0} and RN++ = {x ∈ RN | x � 0}. For every S ⊆ N ,

the indicator function on S is denoted by χS ∈ RN , i.e.,

χSj =

 1, if j ∈ S,

0, if j ∈ N \ S,

and x(S) = x · χS =
∑

i∈S xi for every x ∈ RN .

Let N be a finite nonempty set. A choice problem of N is a pair (P, r) such that r ∈ RN and

P ⊆ RN is feasible (for N), i.e.,

P 6= ∅,RN ; (2.1)

P is closed; (2.2)

P is comprehensive: x ∈ P, y ∈ RN , y 6 x⇒ y ∈ P. (2.3)

We recall the definition of “uniform positive smoothness” (see, e.g., Maschler and Owen (1989)).

Definition 2.1 Let P ⊆ RN be feasible. Denote by ∂P the boundary of P . The set P is smooth

if

3



(1) at every x ∈ ∂P there exists a unique tangent hyperplane Hx = Hx,P to P ;

(2) the mapping ∂P → RN+ , x 7→ λx = λx,P , is continuous, where λx ∈ RN is the unique normal

vector determined by the requirements λx(N) = 1 and Hx = {y ∈ RN | λx · y = λx · x}.

Moreover, a smooth set P is positively smooth (p-smooth) if λx,P � 0 for all x ∈ ∂P , and it

is uniformly p-smooth if there exists δ > 0 such that λx,P � δχN for all x ∈ ∂P .

Thus, a choice problem (P, r) is (uniformly p-)smooth if P is (uniformly p-)smooth. Note

that p-smoothness of P implies non-levelness of P , an assumption that is widely used in the

corresponding literature.

Remark 2.2 Let N 6= ∅ be finite and λ ∈ RN++.

(1) Let P ⊆ RN be feasible. Then there is a unique function g = gλ,P : RN → R that satisfies

x− g(x)λ ∈ ∂P for all x ∈ RN . The mapping g is continuous and satisfies

P = {x ∈ RN | g(x) 6 0}; (2.4)

g(x+ tλ) = g(x) + t ∀x ∈ RN ∀t ∈ R; (2.5)

g is nondecreasing; (2.6)

P is smooth ⇒ ∇g(x) =
λx−g(x)λ,P

λ · λx−g(x)λ,P
∀x ∈ RN , (2.7)

where, for any differentiable real function f : RN → R, ∇f =
(
∂f
∂xi

)
i∈N

denotes the

gradient2 of f .

(2) Let g : RN → R be a continuous mapping that satisfies (2.5) and (2.6). Then the set

P g = P defined by (2.4) is feasible and gλ,P = g. Moreover, if ∇g is continuous, then P s

smooth, and g is convex if and only if P is convex.

Let N be a finite nonempty set. We denote by ΓN the set of all p-smooth choice problems (P, r)

such that P ⊆ RN . A solution on Γ ⊆ ΓN is a mapping σ that assigns to each (P, r) ∈ Γ a set

σ(P, r) ⊆ P . Some well-known properties of a solution σ on Γ are as follows. The solution σ

satisfies

(1) non-emptiness (NE) if σ(P, r) 6= ∅ ∀(P, r) ∈ Γ;

(2) efficiency (EFF) if σ(P, r) ⊆ ∂P ∀(P, r) ∈ Γ;

(3) conditional additivity (CADD) if (P i, ri) ∈ Γ, i ∈ {1, 2, 3}, P 3 = P 1+P 2, and3 r3 = r1+r2

imply that

σ(P 3, r3) ⊇ (σ(P 1, r1) + σ(P 2, r2)) ∩ ∂P 3;

2By (2) of Definition 2.1, the function gλ,P is C1 provided that P is smooth.
3Whenever applied to sets, the “+” denotes the “Minkowski sum”.
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(4) unanimity (UNA) if
(
UN , 0

)
∈ Γ implies σ(UN , 0) =

{
1
|N |χ

N
}

, where

UN = {x ∈ RN | x(N) 6 1};

(5) scale covariance (SCOV) if for all (P, r) ∈ Γ and for all λ ∈ RN++ such that4 (λ∗P, λ∗r) ∈ Γ,

σ(λ ∗ P, λ ∗ r) = λ ∗ σ(P, r);

(6) translation covariance (TCOV) if for all (P, r) ∈ Γ and y ∈ RN such that (P +{y}, r+y) ∈
Γ, σ(P + {y}, r + y) = σ(P, r) + {y};

(7) independence of irrelevant alternatives (IIA) if (P, r), (P ′, r) ∈ Γ, P ⊆ P ′ imply that

σ(P, r) ⊇ σ(P ′, r) ∩ P.

(8) independence of irrelevant expansions (IIE) if (P, r), (P ′, r) ∈ Γ, P ⊆ P ′ imply that

σ(P ′, r) ⊇ σ(P, r) ∩ ∂P ′.

Definition 2.3 Let (P, r) ∈ ΓN . The (generalized) Nash solution of (P, r), denoted by

φ(P, r), is defined by

φ(P, r) = {x ∈ ∂P | (xi − ri)λx,Pi = (xj − rj)λx,Pj ∀i, j ∈ N}. (2.8)

Remark 2.4 Let (P, r) ∈ ΓN . If r /∈ P , then

φ(P, r) =

{
x ∈ ∂P

∣∣∣∣∣x 6 r,
∏
i∈N

(ri − xi) >
∏
i∈N

(ri − yi) ∀y ∈ Hx,P ∩ {z ∈ RN | z 6 r}

}
. (2.9)

If r ∈ P , then

φ(P, r) =

{
x ∈ ∂P

∣∣∣∣∣x > r,
∏
i∈N

(xi − ri) >
∏
i∈N

(yi − ri) ∀y ∈ Hx,P ∩ {z ∈ RN | z > r}

}
. (2.10)

Remark 2.5 Let (P, r) ∈ ΓN . For x ∈ ∂P define the TU game (N, v) =
(
N, vx,Pr

)
by v(N) =

λx,P · x and v(S) = λx,PS · rS for all S $ N . Note that x ∈ φ(P, r) if and only if λx,P ∗ x is the

Shapley value of (N, v) (see Shapley (1969)).

In general, it is well-known that a generalized Nash solution may not exist even in the case that

N = {1, 2}. Indeed, if (P, r) is defined by r = 0 and P = {x ∈ RN | x1 < 0 and x2 6 − 1
x21
},

then φ(P, r) = 0. Thus, we denote

ΓφN = {(P, r) ∈ ΓN | φ(P, r) 6= ∅} and

Γuni
N = {(P, r) ∈ ΓN | P is uniformly p-smooth}.

In order to show that Γuni
N ⊆ ΓφN , the following lemma is helpful.

4We use the notation λ ∗ x = (λixi)i∈N for all λ, x ∈ RN .
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Lemma 2.6 Let (P, r) ∈ ΓN .

(1) If r ∈ ∂P , then φ(P, r) = {r}.

(2) If r /∈ P and maxx∈P,x6r
∏
i∈N (ri − xi) exists, then

∅ 6= arg max

{∏
i∈N

(ri − xi)

∣∣∣∣∣x ∈ ∂P, x 6 r

}
⊆ φ(P, r) ⊆ {x ∈ ∂P | x� r}.

(3) If r is in the interior of P and maxx∈P,x>r
∏
i∈N (xi − ri) exists, then

∅ 6= arg max

{∏
i∈N

(xi − ri)

∣∣∣∣∣x ∈ P, x > r

}
⊆ φ(P, r) ⊆ {x ∈ ∂P | x� r}.

Proof: The first statement is a straightforward consequence of the definition. The second

inclusion in both of the remaining statements follows immediately from the definition of φ. The

first inclusions may be shown as follows. If r /∈ P , then let y ∈ arg maxx∈P,x6r
∏
i∈N (ri − xi).

The hyperplane {z ∈ RM | λ · z = λ · y} is a tangent to the hyperbola {z ∈ RN | r �
z,
∏
i∈N (ri − zi) = t} so that y ∈ φ(P, r) by Remark 2.5. If r is in the interior of P , then the

proof is similar. q.e.d.

Corollary 2.7 The generalized Nash solution of a uniformly p-smooth choice problem exists.

Proof: Let (P, r) ∈ Γuni
N . By (1) of Lemma 2.6 we may assume that r /∈ ∂P . If r /∈ P , then {x ∈

∂P | x 6 r} is nonempty and compact by uniform p-smoothness so that maxx∈P,x6r
∏
i∈N (ri−xi)

exists and (2) of Lemma 2.6 finishes the proof. In the remaining case we may employ (3) of

Lemma 2.6. q.e.d.

Remark 2.8 Without smoothness the Nash solution violates CADD (see Aumann (1985, Sec-

tion 9, on particular Figure 1)). If P and Q are smooth feasible sets, x ∈ P, y ∈ Q, and

x+ y ∈ ∂(P +Q), then x ∈ ∂P, y ∈ ∂Q, and the tangent hyperplanes at x to P and at y to Q

are parallel, i.e., λx,P = λy,Q.

Corollary 2.9 The Nash solution on any Γ ⊆ ΓφN satisfies NE, EFF, CADD, UNA, SCOV,

TCOV, IIA, and IIE.

Remark 2.10 Let (P, r) ∈ ΓN .

(1) Classically (see Nash (1950)) it was assumed that r ∈ P and that P is a convex set. In

this case, φ(P, r) is a singleton, namely the vector y that maximizes the Nash product, i.e.,∏
i∈N (xi − ri), subject to x ∈ P that satisfy x > r.

(2) Similarly, if RN \ P is convex and r /∈ P , then φ(P, x) consists of the unique vector that

maximizes
∏
i∈N (ri − xi) subject to x 6 r and x ∈ ∂P (see (2.10) of Remark 2.4).
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3 Axiomatization on uniformly p-smooth choice problems

The main result of this section is the following theorem.

Theorem 3.1 The Nash solution on Γuni
N is the unique solution that satisfies NE, EFF, CADD,

UNA, SCOV, TCOV, and IIA.

Proof: By Corollary 2.9 we only have to show the uniqueness part. Let σ be a solution on Γuni
N

that satisfies the desired axioms. Let (P, r) ∈ Γuni
N . It remains to show that σ(P, r) = φ(P, r).

We consider first the following special cases.

(1) P = {x ∈ RN | x(N) 6 0}, r = 0: Let x ∈ σ(P, r). By EFF, x(N) = 0. By CADD,

x+ 1
|N |χ

N ∈ σ(UN , 0). By UNA, x = 0. By NE, σ(P, r) = {0} = φ(P, r).

(2) There exists λ ∈ RN++ such that P = {x ∈ RN | λ · x 6 λ · r}. In this case σ(P, r) =

φ(P, r) = {r} by Case 1, SCOV, and TCOV.

(3) There exist λ ∈ RN++ and c > λ · r such that P = {x ∈ RN | λ · x 6 c}. Let

P ′ = {x ∈ RN | λ · x 6 c− λ · r}.

By SCOV and UNA, σ(P ′, 0) = φ(P ′, 0) =
{(

c−λ·r
|N |λi

)
i∈N

}
. By TCOV, σ(P, r) = σ(P ′, 0)+

{r} = φ(P, r).

(4) There exist λ ∈ RN++ and c < λ · r such that P = {x ∈ RN | λ · x 6 c}. Let

P ′ = {x ∈ RN | λ · x 6 −c} and P ′′ = {x ∈ RN | λ · x 6 0}.

By EFF and CAD, σ(P ′,−r) + σ(P, r) ⊆ σ(P ′′, 0). By Case 1 and SCOV, σ(P ′′, 0) =

{0} = φ(P ′′, 0). By Case 3 and NE, σ(P, r) = −σ(P ′,−r) = φ(P, r).

(5) P is convex. Let y ∈ σ(P, r). By EFF, y ∈ ∂P . Let λ = λy,P . Then λ · y > λ · x for all

x ∈ P by convexity. Let

P ′ = {x ∈ RN | λ · x 6 λ · y} and P ′′ = {x ∈ RN | λ · x 6 0}.

By Cases (2) – (4), σ(P ′′, 0) = {0} = φ(P ′′, 0) and σ(P ′, r) = φ(P ′, r) is a singleton. By

CADD, {y}+ σ(P ′′, 0) ⊆ σ(P ′, r) so that y ∈ φ(P, r) by IIA of φ. The opposite inclusion

is shown similarly by interchanging the roles of σ and φ.

(6) RN \ P is convex. Let y ∈ σ(P, r). By EFF, y ∈ ∂P . Let λ = λy,P and P ′ = {x ∈ RN |
λ ·x 6 λ · y}. By IIA and Cases (2) – (4), y ∈ σ(P ′, r) = φ(P ′, r). By IIE of φ, y ∈ φ(P, r).

In order to show that φ(P, r) ⊆ σ(P, r), let z ∈ φ(P, r). If r is not in the interior of P ,

then, by Lemma 2.6 (1) or Remark 2.10 (2), |φ(P, r)| = 1 so z ∈ σ(P, r) by NE.
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Hence, we may assume that r is in the interior of P . It is sufficient to find (P ′, r), (P ′′, 0) ∈
Γuni
N such that 0 ∈ ∂P ′′, RN \ P ′′ is convex, z ∈ ∂P ′, P ′ is convex, P ′ ⊆ P , and P =

P ′ + P ′′. Indeed, as 0 is not in the interior of P ′′, {0} = φ(P ′′, 0) = σ(P ′′, 0). Moreover,

z ∈ φ(P ′, r) = σ(P ′, r) by IIE of φ and Case (5) so that y ∈ σ(P, r) by CADD. Now, we

shall construct P ′ and P ′′. Let GP
′
, GP

′′
: RN → RN be defined by

GP
′
(x) = 2y − x,GP ′′(x) = 2x− 2y ∀x ∈ RN

and define

P ′ = {z ∈ RN | ∃x ∈ ∂P : z 6 GP
′
(x)}, P ′′ = {z ∈ RN | ∃x ∈ ∂P : z 6 GP

′′
(x)}.

With λ = λy,P and g = gλ,P it may easily be deduced that, for all x ∈ RN ,

gλ,P
′
(x) = −g(2y − x) and gλ,P

′′
(x) = 2g

(x
2

+ y
)

so that ∇gλ,P ′(x) = ∇g(2y − x) and ∇gλ,P ′′(x) = ∇g
(
x
2 + y

)
. Hence, P ′ and P ′′ are

uniformly p-smooth by Remark 2.2. It is straightforward to verify that P ′ and P ′′ satisfy

the desired properties.

(7) Now we are able to consider the general case and prove that σ(P, r) = φ(P, r).

(a) Let y ∈ σ(P, r). By EFF and Corollary 6.3 there exists (P̃ , r) ∈ Γuni
N such that P̃ is

convex, y ∈ ∂P̃ , and P̃ ⊆ P. By IIA, y ∈ σ(P̃ , r). By Case (5), y ∈ φ(P̃ , r). By IIE

of φ, y ∈ φ(P, r).

(b) In order to show the opposite inclusion, let z ∈ φ(P, r). By EFF, z ∈ ∂P . By

Corollary 6.3 there exists (P ′,−r) ∈ Γuni
N such that P ′ is convex, P ′ ⊆ −(RN \ P ),

and −z ∈ P ′. Let P ′′ = −(RN \ P ′). By IIE of φ, z ∈ φ(P ′′, r). By Case (6),

z ∈ σ(P ′′, r). By IIA, z ∈ σ(P, r). q.e.d.

4 On the Logical Independence of the Axioms

The following solution, denoted by φ̂, will be useful. For (P, r) ∈ Γuni
N let

φ̂(P, r) =

 φ(P, r) , if r ∈ P,

arg max
{∏

i∈N (ri − xi)
∣∣x ∈ ∂P, x 6 r

}
, if r 6∈ P.

Then φ̂ satisfies NE by Lemma 2.6. In view of and EFF and UNA, because φ̂ is a nonempty

subsolution of φ. It is straightforward to verify that φ̂ satisfies SCOV, TCOV, and IIE. The

following example shows that φ̂ does not satisfy IIA provided that |N | > 2.

Example 4.1 Let |N | > 2 and X =
{
x ∈ RN

∣∣x 6 0,
∏
i∈N (−xi) > 1

}
. Then X is a p-smooth

feasible set. If Y = {y ∈ ∂X | yi > −2}, then Y 6= ∅ so that P = {z ∈ RN | λy,X · z 6

λy,X · y ∀y ∈ Y } is uniformly p-smooth. Let r = 0. We may easily deduce that φ(P, r) = Y .
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Let P ′ = P − {χN}. By symmetry of P , φ(P ′, r) 3 −2χN . Let i ∈ N . Define x̂ by x̂j = −3 and

x̂i = −1− 1
2|N|−1 and observe that x̂ ∈ ∂P ′. However,

∏
i∈N −x̂i = 3n−1 + 3n−1

2n−1 > 2n =
∏
i∈N 2

so that −2χN /∈ φ̂(P ′, r). For sketches of P and P ′ in the case |N | = 2 see Figure 4.1.

−1−2−3

−1

−2

−3

−2χNx̂

P

P ′

r

u1

u2

φ̂(P ′, r)

Figure 4.1: Sketch of the uniformly p-smooth feasible sets P and P ′

We now show that φ̂ satisfies CADD.

Lemma 4.2 The solution φ̂ on Γuni
N satisfies CADD.

Proof: For i ∈ {1, 2}, let (P i, ri) ∈ Γuni
N , xi ∈ φ̂(P i, ri) such that, with P = P 1+P 2, r = r1+r2,

and x = x1 +x2, (P, r) ∈ Γuni
N and x ∈ ∂P. By CADD of φ, x ∈ φ(P, r). It remains to show that

x ∈ φ̂(P, r). If r ∈ P , then the proof is finished.

Hence, we may assume that r 6∈ P . As x ∈ ∂P , λx
1,P 1

= λx
2,P 2

= λx,P . By Remark 2.5, there

exists c ∈ R such that (r2−x2) = c(r1−x1). By Lemma 2.6, x1 � r1 or x2 � r2. Without loss

of generality we may assume that x1 � r1. By definition of φ̂,

P 1 ⊇

{
z ∈ RN

∣∣∣∣∣z � r1,
∏
i∈N

(r1
i − zi) >

∏
i∈N

(r1
i − x1

i )

}
=: Z1 (4.1)

Let Z =
{
z ∈ RN

∣∣z � r,
∏
i∈N (ri − zi) >

∏
i∈N (ri − xi)

}
. Two cases may occur:

(1) x2 > r2. By (4.1), P ⊇ {x2} + Z1. Let z ∈ Z and define z1 = z − x2. It suffices to show

that z1 ∈ Z1. Now, z1 � r1, because x2 > r2 and z � r. As r � x, −1 < c 6 0. With

a = r − z, b = r − x, and α = − c
1+c , we receive

r1 − z1 = a+ αb, r1 − x1 = (1 + α)b, a, b > 0, and α > 0.
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Hence, it suffices to show the following implication:

a, b ∈ RN++,
∏
i∈N

ai >
∏
i∈N

bi, α > 0 =⇒
∏
i∈N

(ai + αbi) >
∏
i∈N

((1 + α)bi). (4.2)

Indeed, (4.2) may be proved by induction on |N |. If |N | = 1, then (4.2) is obviously valid.

Assume (4.2) is valid for |N | 6 r for some r ∈ N. If |N | = r+ 1, then we may assume that

ak < bk for some k ∈ N and, hence, a` > b` for some ` ∈ N . Define ã ∈ RN by ãi = ai for

all i ∈ N \ {k, `}, ãkã` = aka`, and

ãk =

 bk , if aka` 6 bkb`,

aka`
b`

, otherwise.

Then

ã� 0,
∏
i∈N

ãi =
∏
i∈N

ai, and
∏
i∈N

(ãi + αbi) 6
∏
i∈N

(ai + αbi).

The proof is finished by applying the inductive hypothesis, either to N \ {k}, if ãk = bk,

or to N \ {`} in the other case, i.e., if ã` = b`.

(2) x2 � r2. Let

Z2 =

{
z ∈ RN

∣∣∣∣∣z � r2,
∏
i∈N

(r2
i − zi) >

∏
i∈N

(r2
i − x2

i )

}

By definition of φ̂, P 2 ⊇ Z2. As Z1 + Z2 ⊇ Z, the proof is finished.

q.e.d.

The solution σi, i = 1, . . . , 6, shows that the i-th axiom in Theorem 3.1 is logically independent

of the remaining axioms provided that |N | > 2. If (P, r) ∈ Γuni
N , then

σ1(P, r) =

 φ(P, r) , if r ∈ P \ ∂P,

∅ , otherwise;

σ2(P, r) =

 φ(P, r) , if r ∈ P \ ∂P,

φ(P, r)− RN+ , otherwise;

σ3(P, r) =

 φ(P, r) , if r ∈ P \ ∂P,

∂P , otherwise;

σ4(P, r) = ∂P ;

σ5(P, r) = {x ∈ ∂P | x = r + tχN for some t ∈ R};
σ6(P, r) = φ(P, 0).
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5 Bargaining problems and p-smooth choice problems

This section is devoted to some modifications of Theorem 3.1 showing the robustness of this

axiomatization.

We first treat p-smooth choice problems with convex feasible sets. Let Γcon
N = {(P, r) ∈ ΓN |

P is convex}. A set Γ ⊆ Γcon
N is a feasible domain of convex choice problems if

(1) Γ ⊆ ΓφN ;

(2) ({x ∈ RN | x(N) 6 c}, r) ∈ Γ for all c ∈ R and all r ∈ RN such that r(N) 6 c;

(3) If (P, r) ∈ Γ and λ ∈ RN++, then (λ ∗ P, λ ∗ r) ∈ Γ;

(4) If (P, r) ∈ Γ and x ∈ ∂P , then ({y ∈ RN | λx,P · y 6 λx,P · x}) ∈ Γ.

A careful inspection of the cases (1) through (5) in the proof of Theorem 3.1 shows that this

result holds when replacing Γuni
N by any feasible domain of convex choice problems, i.e., we have

the following proposition.

Proposition 5.1 Let Γ ⊆ Γcon
N be a feasible domain. The Nash solution on Γ is the unique

solution that satisfies NE, EFF, CADD, UNA, SCOV, TCOV, and IIA.

A choice problem with reference point (P, r) is a bargaining problem if r ∈ P . In this case,

we may interpret r as the disagreement point and use the letter d instead of r. A bargaining

problem (P, d) is proper if d is an element of the interior of P .

A careful inspection of the proof of Theorem 3.1 shows that this result still holds if Γuni
N is

replaced by the subset of uniformly p-smooth bargaining problems on N .

Moreover, it should be noted that the set of bargaining problems (P, d) ⊆ ΓN such that P is

convex is a feasible domain so that Proposition 5.1 applies also to this set. However, in this

case, we don’t need IIA.

Theorem 5.2 Let Γ ⊆ Γcon
N consist of bargaining problems only. Then Γ ⊆ ΓφN and if Γ is

feasible, then the Nash solution on Γ is the unique solution that satisfies NE, EFF, CADD,

UNA, SCOV, and TCOV.

Proof: Let (P, d) ∈ Γ. By (1) of Remark 2.10, φ(P, d) 6= ∅. In order to show the second

statement, we may follow the first part of the proof of Theorem 3.1. Indeed, we may first

literally the proof until and including case (3) because IIA is not employed in this part. Note

that cases 4, 6, and 7 cannot occur. The first inclusion σ(P, d) ⊆ φ(P, d) of case (5) may be

literally copied–it just refers to IIA of φ. The part that shows the other inclusion with the help

of IIA may now be circumvented, because by (1) of Remark 2.10, φ(P, d) is a singleton. q.e.d.
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We now check if our result may be applied to ΓφN . If we want to adjust the proof of Theorem

3.1 suitably, we first notice that we have to replace Corollary 6.3 by Lemma 6.2 wherever it

occurs. Unfortunately, the general case (7) may not be adjusted in a straightforward manner.

In fact, if P is not uniformly p-smooth, then the convex p-smooth choice problem (P̃ , r) whose

existence is guaranteed by Lemma 6.2 may not be uniformly p-smooth so that φ(P̃ , r) = ∅ might

be possible.

In order to overcome this problem we employ a slightly stronger version of IIA. For the sake of

completeness, we also modify IIE. Let Γ ⊆ ΓN and σ be a solution on Γ. Then σ satisfies

(6’) IIA’ if (P, r) ∈ ΓN , (P ′, r) ∈ Γ, P ⊆ P ′, and σ(P ′, r) ∩ P 6= ∅ imply that (P, r) ∈ Γ and

σ(P ′, r) ∩ P ⊆ σ(P, r);

(7’) IIE’ if (P ′, r) ∈ ΓN , (P, r) ∈ Γ, P ⊆ P ′, and σ(P, r) ∩ ∂P ′ 6= ∅ imply that (P ′, r) ∈ Γ and

σ(P, r) ∩ ∂P ′ ⊆ σ(P ′, r).

Note that φ satisfies IIA’ and IIE’ on ΓφN . Moreover, if we replace IIA and IIE by the stronger

versions wherever they occur in the proof of Theorem 3.1, then we receive the following result.

Corollary 5.3 On the set ΓφN the Nash solution is the unique solution that satisfies NE, EFF,

CADD, UNA, SCOV, TCOV, and IIA’.

Remark 5.4 (1) Corollary 5.3 still holds when ΓφN is replaced by the subset of all bargaining

problems in ΓφN .

(2) The solutions σi, i = 1, . . . 5, defined in Section 4 still show that the i-th axiom is logically

independent of the remaining axioms in all foregoing characterizations of the Nash solution

provided |N | > 2. Moreover, s6 still violates TCOV and satisfies EFF, CADD, UNA,

SCOV, and IIA’ on all mentioned classes of choice problems. However, σ6 also violates

NE if Γ contains all bargaining problems in ΓφN so that, e.g., we don’t know it TCOV is

really needed in Corollary 5.3.

(3) The logical independence of IIA’ in Corollary 5.3 for is an open problem.

(4) Our solution φ̂ defined in 4 still shows that IIA is needed in Proposition 5.1 if the feasible

domain consists, e.g., of all convex uniformly p-smooth choice problems. However, in

general it is an open problem if IIA is really needed. Only in the case |N | = 2 it is known

that IIA is redundant if Γ = Γcon
N ∩ΓφN (see Peleg, Sudhölter, and Zarzuelo (2012, Theorem

3.1)).

6 Appendix

The following remark is useful.
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Remark 6.1 Let P,Q ∈ RN be convex such that P,Q, and P +Q are feasible.

(1) If P is smooth, then P +Q is also smooth.

(2) If P is smooth and, for any y ∈ ∂Q and any λ ∈ RN such that λ > 0 and such that

H = {y′ ∈ RN | λ · y′ = λ · y} is a supporting hyperplane at y of Q, λ� 0, then P +Q is

p-smooth.

(3) If P is smooth and there exists ε > 0 such that, for any y ∈ ∂Q and any λ ∈ RN such

that λ > 0 and λ(N) = 1 and such that H = {y′ ∈ RN | λ · y′ = λ · y} is a supporting

hyperplane at y of Q, λ� εχN , then P +Q is uniformly p-smooth.

Indeed, in order to verify Remark 6.1, note that any z ∈ ∂(P +Q) is of the form z = x+ y for

suitable x ∈ ∂P and y ∈ ∂Q and if H = {z′ ∈ RN | λ · z′ = λ · z} for some λ > 0, λ 6= 0, is a

supporting hyperplane at z to P +Q, then {x′ ∈ RN | λ ·x′ = λ ·x} is a supporting hyperplane of

P at x so that λ is proportional to λx,P and {y′ ∈ RN | λ · y′ = λ · y} is a supporting hyperplane

at y to Q. These observations immediately imply the desired statements.

Lemma 6.2 If P ⊆ RN is a p-smooth feasible set and y ∈ ∂P , then there exists a p-smooth

feasible set P̃ ⊆ RN such that

P̃ is convex; (6.1)

y ∈ ∂P̃ ; (6.2)

P̃ ⊆ P. (6.3)

Proof: For simplicity we may assume that y = 0 (otherwise replace P by P − {y} and y by 0).

Moreover, we may assume that λy = λy,P = 1
nχ

N (otherwise replace P by λy ∗P ). Let g = gλ
y ,P

and X = Hy,P = {x ∈ RN | λy · x = 0} = {x ∈ RN | x(N) = 0}. Now we define G : R+ → R by

the requirement that

G(t) = max{∇g(rz) · z | z ∈ X, ||z|| = 1, 0 6 r 6 t} ∀t > 0, (6.4)

and note that G is well-defined by Remark 2.2. Moreover, G(0) = 0 and G is continuous. By

the fundamental theorem of calculus there exists a function ĝ : R → R such that ĝ′ = G and

ĝ(0) = 0. As G is monotonically increasing, ĝ is a convex function. For any z ∈ X satisfying

||z|| = 1, define gz : R→ R by gz(t) = g(tz) for all t ∈ R+. Then, for all t > 0,

g′z(t) = ∇g(tz) · z 6 ĝ′(t) and gz(0) = 0.

Hence, we may conclude that

gz(t) 6 ĝ(t) ∀t ∈ R+. (6.5)

Now we are ready to define ḡ as follows: For z ∈ RN let x(z) = z − z(N)λy. Then x(z) ∈ X
and we define ḡ(z) = ĝ(||x(z)||) + z(N) so that ḡ(z + tλy) = ḡ(z) + t for t ∈ R. By (6.4), ḡ is

symmetric in the sense that

ḡ(z) = ḡ
(
z + χ{i}(zj − zi) + χ{j}(zi − zj)

)
for all z ∈ RN and i, j ∈ N. (6.6)
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By (6.5) and (2.5),

g(z) 6 ḡ(z) ∀z ∈ RN . (6.7)

Define P̂ = {z ∈ RN | ḡ(z) 6 0}−RN+ . By (6.7) and comprehensiveness of P , P̂ ⊆ P . Moreover,

y = 0 ∈ P̂ . It is easy to check that, for all z ∈ RN and all i ∈ N ,

∂ḡ

∂xi
(z) =

 1 , if x(z) = 0,

ĝ′(||x(z)||) xi(z)
||x(z)|| + 1 , if x(z) 6= 0.

(6.8)

As ĝ is a convex function, we conclude that P̂ is closed and convex. In order to show that P̂ is

smooth, by convexity, it suffices to show that at each z ∈ ∂P̂ there exists a unique supporting

hyperplane to P̂ . Let λ′ ∈ RN , λ′ 6= 0, be some vector such that P̂ ⊆ {z′ ∈ RN | λ′ · z′ 6 λ′ · z}.
Then there exist x̂ ∈ RN with ḡ(x̂) 6 0 and x ∈ −RN+ such that z = x̂+ x. Hence ḡ(x̂) = 0 and

x ∈ ∂(−RN+ ). As −RN+ is a cone, λ′ · x 6 0. As λ′ · x̂ = λ′ · (x̂+ 0x) 6 λ′ · z = λ′ · x̂+ λ′ · x, we

may conclude that λ′ · x = 0 so that λ′ · x̂ > λ′ · z′ for all z′ ∈ RN with ḡ(z′) = 0. Thus, λ′ is

proportional to ∇ḡ(z).

Now, P̂ is p-smooth, then P̃ = P̂ satisfies the desired properties. Hence, we may assume that P̂

is not p-smooth. We now construct a p-smooth feasible set P̃ with 1
2 P̂ ⊆ P̃ ⊆ P̂ . Note that 1

2 P̂

is a smooth convex feasible set that contains y = 0 in its boundary. Moreover, gλ
y , 1

2
P̂ (z) = ḡ(2z)

2

for all z ∈ RN . For i ∈ N , let Xi = {x ∈ X | ∂ḡ∂zi (x) 6 1
2}. As P̂ is not p-smooth, by Remark

2.2 (2.7), a careful inspection of (6.8) shows that Xi 6= ∅ for all i ∈ N . Let x, x′ ∈ Xi such that

||x′|| > ||x||. As ĝ is convex and ḡ(z) = ĝ(||z||) for all z ∈ X, ḡ(x′)/2− ḡ(x′/2) > ḡ(x)/2− ḡ(x/2).

As Xi is closed, we may conclude that

αi = min
x∈Xi

ḡ(x)

2
− ḡ

(x
2

)
exists. Moreover, by smoothness of P̂ , αi > 0. Finally, by (6.6) we may conclude that αi = αj

for all i, j ∈ N . Now we are ready to construct P̃ . Let ε 6 min
{
αi
|N | ,

1
2|N |

}
for all i ∈ N and

define

Q =

{
y ∈ RN

∣∣∣∣y+(N) 6 ε
y−(N)

1 + y−(N)

}
,

where x+ and x− denote the positive and negative part of any x ∈ RN , i.e., x+, x− ∈ RN+ such

that x = x+ − x−. Note that Q is convex and feasible and that Q ⊆ (−RN+ ) + {εχN}. Let

P̃ = 1
2 P̂ +Q. It is straightforward to verify that P̃ is closed so that P̃ is feasible. We conclude

that Q satisfies the assumptions in (2) of Remark 6.1. It suffices to show that P̃ ⊆ P̂ . Let

z ∈ ∂P̃ . Then there exist x ∈ ∂
(

1
2 P̂
)
, y ∈ ∂Q, and λ ∈ RN+ with λ(N) = 1 so that z = x + y

and 1
2 P̂ ⊆ {x

′ ∈ RN | x′ ·λ 6 x ·λ} and Q ⊆ {y′ ∈ RN | y′ ·λ 6 y ·λ}. If |N |mini∈N λi >
1
2 , then

λ · y 6 −y−(N)
2|N | + y+(N) 6 −y−(N)

2|N | + ε y−(N)
1+y−(N)

6 y−(N)
(

ε
1+y−(N)

− 2
2|N |

)
6 y−(N)

(
ε− 1

2|N |

)
6 0 = λ · 0

so that y = 0 and, hence, z ∈ P̂ . If |N |mini∈N λi 6 1
2 , then, by construction, x+ εχN ∈ P̂ . As

y 6 εχN , x+ y ∈ P̂ . q.e.d.
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Corollary 6.3 Let P ⊆ RN be a uniformly p-smooth feasible set and y ∈ ∂P . Then there exists

a uniformly p-smooth feasible set P̃ ⊆ RN that satisfies (6.1) through (6.3).

Proof: By Lemma 2.1 there exists a p-smooth feasible set P̃ with the desired properties.

We shall now modify P̃ as follows: For µ > 0 let

Xµ =
{
z ∈ RN

∣∣∣(µχN\{i} + (1− (|N | − 1)µ)χ{i}
)
· z 6 0 ∀i ∈ N

}
.

As P is uniformly p-smooth, for any µ > 0 with µ < min{λyi | i ∈ N},

P +Xµ ⊆ P. (6.9)

Define P̂ = P̃ +Xµ. As a sum of two convex sets, P̂ is convex. By (6.9) and (6.7), P̂ ⊆ P , and

y ∈ P̂ , because y ∈ P̃ . As Xµ is a convex cone, {x}+Xµ ⊆ P̂ for all x ∈ P̃ . As Xµ ⊇ −RN+ , P̂

is comprehensive.

We now show that P̂ is closed. Let (x̂t + xt)t∈N be a convergent RN -sequence such that x̃t ∈ P̃
and xt ∈ Xµ for all t ∈ N. It remains to prove that z = limt→∞ x̂

t + xt ∈ P̂ . If z′ ∈ RN such

that x̂t + xt > z′ for all t ∈ N, then x̂t ∈ {z′} − Xµ forall t ∈ N. As µ < λyi for all i ∈ N ,

{x ∈ RN | λy · x 6 λy · y} ∩ ({z′} −Xµ) is compact. As P̃ ⊆ {x ∈ RN | λy · x 6 λy · y},
P̃ ∩ ({z′} −Xµ) is also compact. Hence, (x̂t)t∈N has a convergent subsequence, let us say,

is convergent itself. We conclude that (xt)t∈N is also convergent. As P̃ and Xµ are closed,

limt→∞ x̂
t ∈ P̃ and limt→∞ x

t ∈ Xµ so that z = limt→∞ x̂
t + limt→∞ x

t ∈ P̂ . Hence P̂ is feasible

and Remark 6.1 finishes the proof. q.e.d
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