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Abstract

Using a stochastic overlapping generations model with endogenous labour
supply, this paper studies the design and performance of a policy rule for
the retirement age in response to fertility and mortality shocks. Two main
results are derived: First, to o¤set a change in the labour force the retirement
age should adjust more than proportionally to the fertility change and, sec-
ond, to be socially desirable the retirement age should be indexed less than
proportionally to changes in life expectancy.
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1 Introduction

The combination of fertility slowdowns and increasing longevity in developed
economies may have dramatic economic e¤ects. The purpose of this paper is,
�rst, to analyse the impact of fertility and mortality shocks on key macroeconomic
variables and, second, to discuss the design of a policy rule that ensures a more
equitable distribution pro�le of welfare across generations.

The dependency ratio is partly shaped by the "baby-boom" phenomenon of
the 1940-50s followed by a baby-bust in the 1970-80s (see, e.g., Bongaarts, 1998,
and IMF, 2004). As a consequence, the labour force is currently shrinking and the
number of retirees is increasing. An important question is, therefore, how to design
a policy rule for the retirement age that e¤ectively counteracts this decline in the
labour force. Longevity of the elderly, which is expected to increase permanently
(see, e.g., Oeppen and Vaupel, 2002; UN, 2004), is also increasing the dependency
ratio. There is a large body of literature on the subject of demographic change
and viability of social security arrangements (see e.g. Auerbach and Lee, 2001;
Campbell and Feldstein, 2001; and Cutler et al., 1990), but this is not the focus
of this paper. It will su¢ ce to note that the period of time during which retirees
collect pension bene�ts increases for two reasons: retirees are expected to live
longer, and they tend to retire earlier �partly because they attach a higher weight
to leisure in line with increasing economic prosperity. As a result, the retirement
period is extended at both ends.

In order to devise appropriate policy responses, the dynamics of these e¤ects
must be well understood. If, under existing welfare arrangements, it turns out
that retirees lose more than workers, there may be a rationale for economic policy
to redistribute. This could be achieved through higher wage taxes if retirees are
hurt more than workers. However, since this would distort the incentives to work,
it might not be the right thing to do. Furthermore, due to the permanent nature
of the increases in longevity, a tax-smoothing strategy (Barro, 1979) may not be
what is called for. If a temporary fertility decline was the only demographic change
it would make more sense to raise and smooth taxes.

Since leisure is often considered a consumption-equivalent (normal) good, labour
supply may fall in line with economic growth1. This will exacerbate the negative
impact on labour supply following the decline in fertility. To o¤set these labour
supply dynamics the incentive of workers to work more could be stimulated through
lower income taxes, but that would be di¢ cult in light of the discussion above.
In addition, workers�inclination to retire earlier, �nanced by their own personal
savings, is problematic to legislate against in liberal welfare states. In several coun-
tries, the reaction to these dilemmas has been to increase the statutory retirement
age in order to retain workers in the labour force for a longer period. Against that,
the aim of this paper is to analyse the optimal response of the retirement age as
a policy instrument to deal with the changes in fertility and longevity.

The magnitudes of declines in fertility (and thus in labour forces) are well
known. However, the changes in life expectancy are inherently uncertain, which
warrants a stochastic approach. In the literature, stochastic population projec-

1This is a plausible explanation for the upward trend in early retirement and the increased
demand for leisure during working life.
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tions, in line with, e.g., Alho and Spencer (1985), have been combined with CGE
models to produce stochastic trajectories of key economic variables (see, e.g., Fehr
and Habermann, 2008). However, while useful in many respects, a drawback of
such large-scale (black-box) simulations is that it may be very di¢ cult to identify
the seperate role of each variable and parameter. An alternative approach, as
pursued in this paper, is to formulate a dynamic stochastic general equilibrium
(DSGE) model. The advantage of deriving the economic e¤ects of demographic
shocks analytically is that the role of each model parameter can be identi�ed more
accurately. Furthermore, the derived analytical expressions can be calibrated, in
order to underscore the role of the fundamental model properties using numerical
simulations.

Building on these advantages of an analytical solution, this paper develops a
DSGE model with overlapping generations (OLG). The novelty of the model is to
incorporate the retirement age together with endogenous labour supply, in a way
that emphasises both the extensive and the intensive margins of labour supply
when tracing the e¤ects on di¤erent generations from stochastic shocks to fertility
and life expectancy. However, the fact that labour supply is endogenous makes
the dynamic system much more complicated to solve analytically. The technical
innovation of this paper is to apply the method of undetermined coe¢ cients (Uhlig,
1999) in a way that enables me to solve for endogenous labour supply (and in
principle for an unlimited number of additional state variables). While this solution
method by now is standard in the RBC literature, this paper shows how the same
method can be used in the context of stochastic OLG models.

Since the capital-labour ratio is endogenous in the model, wages and the inter-
est rate are a¤ected when demographic shocks appear2. For example, if fertility
declines there will be a tendency for wages to increase. Regarding the increase in
life expectancy, workers are expected to consume less, and to save and work more,
in order to �nance their longer retirement period. The net e¤ect on retirees, on
the other hand, is also ambiguous because, �rst, the interest rate falls, due to the
decline in fertility, but then it increases, because of the increased labour supply
induced by the increase in life expectancy. Based on this setup we �nd that work-
ers and retirees are a¤ected in di¤erent proportions by changes in fertility and life
expectancy. We therefore ask whether this market allocation is fair compared to
a socially optimal allocation, and we �nd that it does not correspond with the
optimality conditions for welfare. This motivates me to consider the retirement
age as an alternative policy instrument to provide a more equitable outcome across
generations.

The impact on economic variables is presented in terms of analytical expres-
sions, incorporating the changes in leisure, and it is feasible to derive the impacts on
labour supply of changes in the retirement age, in fertility, and in life expectancy.
This would not be feasible in a model with exogenous labour supply. Because of
the closed form solution for economic responses to demographic changes, it is pos-
sible to isolate the retirement age for any change in fertility and life expectancy.
For instance, if fertility fell by 1% and life expectancy increases by 1% we �nd that

2 In fact, Kotliko¤, Smetters and Walliser (2001), Welch (1979) and Murphy and Welch (1992)
�nd evidence that demographic changes a¤ect factor prices, which emphazises the importance of
a general equilibrium model with endogenous interest rates and wages.
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the retirement age should increase by 0.25%. This is because workers bear a lower
burden than retirees, and because workers tend to supply less labour when the
retirement age increases3. In this context, an innovation of this paper is to derive
the elasticity for leisure with respect to the retirement age, which we �nd to be
positive. The elasticities of leisure with respect to fertility and life expectancy are
both negative. These elasticities can be directly traced to the fundamental model
properties and the underlying parameters. A second result is that, regardless of
intergenerational welfare perspectives, the decline in the e¤ective labour force can
be o¤set by an increase in the retirement age if it is more than proportional to the
fertility fall. This is because workers substitute for leisure when fertility falls and
the retirement age increases. The optimal response of the retirement age to o¤set
the decline in the labour force is found to be 1.1% for each fall in fertility of 1%.

The next section develops the model and the analytical solution method, while
section 3 presents the solution for key variables in the market equilibrium in re-
sponse to changes in fertility, life expectancy, and the retirement age. Section 4
then considers the policy option of changing the retirement age in accordance with
intergenerational fairness. Finally, section 5 concludes and outlines an agenda for
potential extensions of the research on this topic.

2 The Model

This section outlines a stochastic OLG model ad modum Bohn (2001). In that
paper the length of the retirement period is incorporated into a model with ex-
ogenous labour supply. The model in this paper extends this structure by �rst
endogenising labour supply and, second, by incorporating the length of working
period, such that if its length changes so will the retirement age. We can then iden-
tify three components of e¤ective labour supply: the exogenous extensive margin,
the endogenous intensive margin, and the growth in the number of workers.

By making these extentions, all the results and policy implications in Bohn
(2001) will also be modi�ed. In fact, using Bohn�s model it is not possible to
analyse neither the policy choice of adjusting the retirement age in response to de-
mographic changes, nor the e¤ects on households�labour-leisure choices of changes
in the retirement age. OLG models with endogenous intensity of labour supply
are common in the literature, but a model that is also combined with changes in
labour supply at the extensive margin has, to my knowledge, not previously been
developed.

Below, we present the stochastic OLG model, consisting of the demographic
structure, household behaviour, technology, resources, and the pension system.
The last subsection presents the analytical solution method.

2.1 Demographics

Individuals are assumed to live for three periods: as children, adults and elderly,
respectively, and individuals in each cohort are assumed to be identical. Children
born in period t is denoted by N c

t , where N
c
t = btN

w
t and bt > 0 is the birth rate.

3This latter argument could be interpreted as if early retirement is more frequent, or alterna-
tively, as a decrease in working hours per week.

4



Adults are all assumed to work for the full length of period t and are denoted
by Nw

t , while they are retireed during period t + 1. The labour force grows by
Nw
t =N

w
t�1 = 1+n

w
t , where n

w
t � �tbt�1 is the (net) growth rate of the labour force

and �t is the length of the working period
4. Workers supply labour, Lt, elastically

up to one unit: f1� lg 2 (0; 1), where Lt = (1� lt)Nw
t .

The aggregate adult lifetime, �, is composed by the adult working and retire-
ment periods, respectively, as illustrated in �gure 1.

Figure 1. Aggregate adult lifetime: work and retirement

Speci�cally, � comprises an expected term and an unexpected term, i.e. �t =
�et�1�

u
t , where f�g 2 (0; 2). The components in �t are assumed to be stochastic

and identically and independently distributed, as are bt and �t. The aggregate
adult lifetime thus comprises the lengths of the working and retirement periods,
from where the latter, � 2 (0; 1), is residually determined in (1).

�t = �t � �t�1 (1)

An increase in � will therefore lead to a proportional decrease in the length of
the retirement period, �. Furthermore, changes in total length of life, �, entirely
impacts upon � if � remains constant. Based on this setup, we argue that an
increase in � can be interpreted as an increase in the retirement age.

2.2 Household Behaviour

Parents are assumed to make economic decisions about consumption on behalf of
their children and themselves. A childhood period is conceptually necessary in
this model in order to study a change in fertility in period t � 1 that a¤ects the
size of the labour force in period t. However, an explicit formulation of the optimi-
sation of parents�utility over their own consumption and that of their children is
not necessarily important because the optimisation problem would merely relate
�rst period consumption of the household to the weight that parents assign to
consumption of their children in utility. This relation can be shown to enter into
lifetime utility as a weight on �rst period consumption, �1(bt) > 0, that depends
positively on the number of children, see Jensen and Jørgensen (2008)5.

4 If �t increases then workers must remain in the labour force for more "sub-periods", which is
why the net growth rate of the labour force increases. Similarly, if fertility was low in the former
period the current labour force decreases. The equivalent notation in a standard Diamond (1965)
OLG model would just have a normalised length of working period (�t = 1), so that the growth
rate of the labour force is bt�1, i.e. Nw

t =N
w
t�1 = 1 + bt�1.

5We assume, however, that a 1% increase in fertility would increase �1(bt) by 1%, because
parents need to provide more consumption to more children in the household. The elasticity of
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Utility is assumed to feature homothetic preferences, and is de�ned over con-
sumption and leisure as follows,

ut = �t

�
�1(bt) ln c1t +  ln

�
lt
�t

��
+ �2Et [�t+1 ln c2t+1] (2)

where c1t is �rst period consumption, c2t+1 is second period consumption, lt is �rst
period leisure and  > 0 its relative weight, while �2 > �1 is the discount rate on
second period consumption. Retirees are assumed not to leave any bequests.

Second period consumption is scaled by the length of the retirement period,
because the higher � is the longer retirees can enjoy consumption. The same
argument applies to the length of the �rst period, �. However, if � increases some of
the "full-leisure" periods in retirement will be substituted by periods of both labour
and leisure in the working period. This results in a decreasing lifetime leisure, the
disutility of which must be accounted for relative to leisure. Consequently, we
scale lt by �t. If the retirement age increases, individuals can then account for
the disutility of less lifetime leisure by increasing leisure6. E¤ective labour supply
would initially rise by the full amount of the increase in the retirement age, but
this e¤ects will be counteracted if the disutility for workers of less lifetime leisure
induces them to supply labour less intensively.

Budget restrictions on c1t and c2t+1 are stated in (3) and (4), respectively.

�tc1t = (1� �t) (1� lt)wt � St (3)

c2t+1 =
Rt+1
�t+1

St + �t+1 (1� lt+1)wt+1 (4)

In second period consumption the gross return to retirees�savings, Rt, is now scaled
by the length of the retirement period. The length of second period of life has
been incorporated in similar ways by both Bohn (2001) and Chakraborty (2004).
However, in the former paper � does not depend residually on the length of the
working period, �, and in the latter paper, � is incorporated di¤erently and denotes
the length of total life and at the same time the discount rate, and Chakraborty
also makes it endogenous to health expenditure. In the present paper, we also
consider � to be endogenous �depending on shocks to either the total length of
adult life or to the length of working life, i.e. � = � � �. In that way changes
in the retirement age is seen to automatically a¤ect the length of the retirement
period, which could not be analysed by Bohn (2001) and Chakraborty (2004).

The intertemporal budget constraint (IBC) is derived by combining c1t and
c2t+1 over savings to yield:

�tc1t +
�t+1
Rt+1

c2t+1 + (1� �t)wtlt = (1� �t)wt +
�t+1
Rt+1

�t+1 (1� lt+1)wt+1 (5)

The variable wt denotes the wage rate, St is savings, �t is the pension contribution
rate, and �t is the pension replacement rate.

�1(bt) is therefore assumed to be equal to ��1(b) = 1, where � denotes the elasticity of the weight
on �rst period consumption in utility with respect to the number of children in the household.

6This feature is a way to implicitly add second period leisure into the utility function without
explicitly maximising with respect to lt+1.
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By maximising utility (2) subject to the IBC (5) the two �rst order condi-
tions are derived: the Euler equation and the optimality condition for �rst period
consumption and leisure in (6) and (7), respectively.

c1t =

�
�1(bt)

�2

�
Et

�
c2t+1
Rt+1

�
(6)

lt
�t
=

 


�1(bt)

!
c1t

(1� �t)wt
(7)

If fertility increases so does �1(bt) in (6) and (7), and households prioritise
additional consumption in the �rst period so that c1t increases relative to c2t+1
and lt. Note from (7) that if �t increases so must lt because workers compensate
for less lifetime leisure by increasing �rst period leisure. The uniqueness of this
relationship illustrates that an increase in the retirement age would induce an
increase in leisure and consequently a fall in the intensive margin of labour supply.
This link emphasizes that the increasing e¤ect on e¤ective labour supply of a rise
in the retirement age will be counteracted by the demand for leisure.

2.3 Resources and Social Security

Firms are assumed to produce output with capital and labour according to the
assumed Cobb-Douglas technology,

Yt = K
�
t (AtLt)

1��

where Kt is physical capital, productivity is At which is stochastic and grows at a
rate, at; so At = (1 + at)At�1, where at is assumed identically and independently
distributed. The wage rate and the return to capital are obtained through wt (kt) =
f (kt)�ktf 0 (kt), and Rt (kt) = f 0 (kt), where the capital-labour ratio is de�ned over
growth rates as kt�1 � Kt= (At�1Lt�1). Capital is accumulated through workers�
savings, i.e. Kt+1 = Nw

t St, and by assuming that �rms are identical, and that
capital fully depreciates over one generational period, the resource constraint of
the economy is:

Yt �Kt+1 = �tNw
t c1t + �tN

w
t�1c2t (8)

The PAYG system is de�ned as follows:

�t�tN
w
t�1 (1� lt)wt = �tNw

t (1� lt)wt (9)

The PAYG system can feature both de�ned (�xed) bene�ts (DB) and de�ned con-
tributions (DC) schemes, since neither � nor � are necessarily �xed. For instance,
solving for a DB system yields (10).

�t = �

�
�t � �t�1
1 + nwt

�
(10)

Evidently, with the replacement rate held �xed, an increase in the working period,
�, leads to a lower contribution rate. Similarly, an increase in the total length of
life calls for a higher contribution rate.
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In this paper, the focus is not on pension reform in terms of changing the
replacement and/or contribution rates more or less than they automatically change
when the dependency ratio changes, hence our notion of a passive pension system.
This completes the presentation of the stochastic OLG model. In the next section
a method to solve the model analytically is presented.

2.4 The solution method

We are interested in an analytical closed form solution of the model that provides
intuition on the impact on economic variables when fertility and life expectancy
change. The advantage of this analytical approach is that changes in each eco-
nomic variable can be traced to the fundamental model properties and underlying
parameters. Furthermore, the exact policy rules that will generate optimal distri-
butions of welfare can be derived analytically, and their implications can be traced
in detail across di¤erent generations.

The method of undetermined coe¢ cients is used to obtain this analytical so-
lution for the recursive equilibrium law of motion - charaterised by providing the
solution in terms of analytical elasticities of economic variables with respect to
demographic shocks. By adopting this approach the non-linear stochastic OLG
model is replaced by a log-linearised approximate model with variables (denoted
with "hats") stated in terms of percentage deviations from their steady state val-
ues. We adopt a version of the method of undetermined coe¢ cients that relies on
Uhlig (1999), which we extend to account for expected changes in life expectancy7.
We refer to the details of our extension of the solution method in Appendix A8.

All endogenous variables from the log-linearised model, bet 2 fbkt;bc1t; bc2t; blt; byt;bRt; bwt; b�tg, are written as linear functions of a vector of endogenous and exogenous
state variables, respectively. The vector of endogenous state variables is bxt 2 fbkt;bc2tg, the vector of endogenous non-state variables is bvt 2 fbc1t; blt; byt; bRt; bwt; b�tg,
and the vector of exogenous state variables (including the demographic shocks to
fertility, bbt�1, and life expectancy, b�et ) is bzt 2 fb�t�1; b�t; bat; bbt�1; bbt; b�et�1; b�et ; b�ut g.
The recursive equilibrium is characterised by a conjectured linear law of motion
between endogenous variables in the vector bet, and state variables in the vectorsbvt and bzt. As an example of how a given endogenous variable is determined we
illustrate the linear law of motion for leisure, blt, in (11), where e.g. �l� denotes the
elasticity (�) of leisure (l) with respect to the retirement age (�). All endogenous
variables in bet can be expressed in this fashion.blt = �lkbkt�1 + �lc2bc2t�1 + �l�1b�t�1 + �l�b�t (11)

+�labat + �lb1bbt�1 + �lbbbt + �l�e1b�et�1 + �l�eb�et + �l�ub�ut
7 If current workers expect their lives to be longer this change will ultimately take place at

the end of their retirement period, i.e. we analyse an exogenous shock to life expectancy that is
expected to take place in the next period.

8A less advanced version of the method of undetermined coe¢ cients (based on only one state
variable) was �rst applied on OLG models by Andersen (1996, 2001) and Bohn (1998, 2001)
in models without endogenous labour supply and without a retirement age, and by Jensen and
Jørgensen (2007) in a model that incorporates the retirement age but still without endogenous
labour supply.
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Changes in e.g. life expectancy is inherently stochastic, and with this solution
method it is feasible to specify distributions for the stochastic innovations in life
expectancy and simulate the impulse responses on e.g. leisure. One advantage with
this solution method is, however, that the impact on leisure is stated in terms of an
elasticity, �l�e, the size of which naturally assumes a 1% shock to life expectancy,b�et . So instead of evaluating the impact on leisure of some pre-speci�ed distribution
of stochastic innovations for life expectancy we simply ask the question: "how will
leisure change if there was suddenly an increase in life expectancy of 1%". In this
terminology we basically make comparative statics with an otherwise stochastic
model (see Uhlig, 1999; Campbell, 1994)9. Note that the size of the stochastic
shock could, of course, be any value from a pre-speci�ed distribution.

The purpose of the following section is to interpret these elasticities, both
intuitively and numerically, and to employ them in policy re�ections on intergen-
erational welfare. This involves calibrating the model using what we believe are
realistic parameter values, as listed in Appendix B, and simulating the model using
a Matlab routine (available upon request).

3 Market equilibrium and demographic shocks

How do demographic changes a¤ect the welfare of di¤erent generations? To address
this question, we interpret the elasticities of macroeconomic variables with respect
to demographic changes. Attention is restricted to three shocks: �rst, a shock
to the lagged birth rate, bbt�1. Second, a shock to life expectancy, b�et . Third,
a change in the retirement age, b�t. We analyse the change in the retirement
age as a stochastic shock in order to derive the e¤ects it entails. In section 4,
on the other hand, it is assumed that the retirement age is under government
control which facilitates the use of the retirement age as a policy instrument10.
We furthermore assume a PAYG system with �xed bene�ts for the remaining
sections of the paper, but we do, however, provide perspectives to a DC system.
As to the economic e¤ects, the focus is on consumption possibilities for workers
(bc1t) and retirees (bc2t), respectively, and on leisure for workers (blt)11.
3.1 A shock to fertility

Industrialised countries are currently experiencing that a historically low numbers
of young workers are entering the labour force, due to low fertility in the 1970-80s.
How workers and retirees are a¤ected by this negative shock to lagged fertility
is analysed in this section. The aggregate impact on economic variables can be

9This procedure is standard in the RBC literature.
10 It is usually more natural to think of a change in the retirement age as either endogenous to

the agent or, alternatively, as exogenous and under government control. In this section, we are
interested in the e¤ects of a change in the retirement age and not in what causes that change.
11Formally, we restrict the model to consist of variables in the vector of endogenous variabelsbet 2 fbkt;bc1t; bc2t; blt; byt; bRt; bwt; b�tg, as well as a reduced vector of exogenous state variablesbzt 2 fb�t�1; b�t; bbt�1; b�ut ; b�etg. The reduced model is therefore re-stated in terms of fewer state

variables. The expression e.g. for leisure changes from (11) to: blt = �lkbkt�1+�lc2bc2t�1+�lb1bbt�1+
�l�ub�ut + �l�eb�et + �l�1b�t�1 + �l�b�t. The three remaining demographic changes fbbt; bat; b�et�1g
could be analysed too, but this is beyond the scope of this paper.
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decomposed into their sube¤ects by inspecting the relevant elasticities, see table 1.
The results are presented both as analytical expressions, so their components can
be interpreted, and as numerical simulations, in order to gain an understanding of
the magnitudes involved. The interpretation of e.g. �lb1 is that a 1% increase in
fertility will produce a 0:001% decrease in leisure. This will magnify the fertility-
e¤ect on the shrinking e¤ective labour force and the increasing capital-labour
ratio. This intuition behind this result warrants a more extensive scrutiny which
we provide in the following.

Table 1. A shock to lagged fertilty
E¤ect on Analytical elasticity Value
�c1b1 = [�c2k � �Rk]�kb1 = �0:01

�lb1 = �c1b1 + �23��b1 � �22�wb1 = �0:001

�c2b1 =
�15�lb1��3�c1b1��5�kb1��2

�4
= 0:34

�kb1 =
�12�wb1��21�lb1��8��b1

�9�wk��7�c2k+�12�Rk��20�lk = �0:01

If intensive labour supply was exogenous, the only e¤ect on the capital-labour
ratio originates from the lower growth rate of the labour force, so the e¤ects on
consumption can be directly determined by wages and pension contributions, as
in Jensen and Jørgensen (2008). On the other hand, if labour supply is a choice-
variable both consumption and leisure are interrelated and together determine
the capital-labour ratio. Consequently, we analyse the substitution, income, and
wealth e¤ects on leisure. This analysis will be founded on the IBC in (5).

For a 1% shock to lagged fertility, bbt�1, we insert the law of motion for the
relevant variables into the log-linearised equation for leisure (12) in order to obtain
the elasticity for leisure, blt, with respect to bbt�1 in (13):blt = bc1t � �22 bwt + �23b�t � �22��1(b)bbt (12)

�lb1 = �c1b1 � �22�wb1 + �23��b1 (13)

Analysing �rst the substitution e¤ect on blt we know that a smaller labour force
generates higher wages and a lower interest rate. A higher wage rate will increase
the price of blt, so its substitution e¤ect will be negative. The substitution e¤ect
on both �rst period consumption, bc1t, and second period consumption, bc2t, will be
positive because their prices become relatively lower than that of blt. An o¤setting
e¤ect on the positive response of bc2t is that the negative response of the interest
rate will make the discounted price on bc2t higher. The elasticity for second period
consumption is �c2b1 = 0:34, which is then �0:34 for a negative shock to bbt�1.
Since the prices on blt and bc2t have increased, an unchanged level of income can
buy less, so the income e¤ects on both bc1t and bc2t, as well as on blt, are negative.

The increasing wage rate also appears in lifetime income on the right-hand side
of IBC. This wealth e¤ect is consequently positive for both bc1t, bc2t and blt. The
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dynamics of blt and bc2t, for a positive shock to bbt�1, are illustrated by the simulated
trajectories in �gures 2 and 3, respectively12.
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If there is no distortionary taxation, then in our case, with an intertemporal
elasticity of substitution equal to 1, these three e¤ects will o¤set each other so the
net e¤ect on blt is zero. However, there is in fact a proportional contribution rate
from the pension system associated with the price on blt and with lifetime income.
The fact that proportional taxes are distorting when blt is endogenous means that
the positive wealth e¤ect will more than o¤set the negative sum of the substitution
and income e¤ects13. In this context Weil (2006) �nds that the the most important
means by which ageing will a¤ect aggregate output and welfare is the distortion
from taxes to fund PAYG pension systems. Thus, the elasticity for blt with respect
to bbt�1 = �1 is positive, i.e. �lb1 = 0:001.

Since workers earn wages and pay pension constributions we have to consider
the "factor price e¤ects" and the "�scal e¤ects" on bc1t, respectively. Regarding
the �scal e¤ect, the negative fertility shock requires each worker to pay more taxes
in order to �nance the �xed bene�ts to retirees. Through the factor price e¤ect,
workers receive higher wages because of the higher capital-labour ratio caused by a
direct e¤ect and an indirect e¤ect: the negative shock to fertility directly a¤ects the
population growth rate (1+nt). The indirect e¤ect originates from the endogenous
response of leisure (�lb1 > 0). Consequently, the intensive labour supply (��lb1)
falls, and the net e¤ect on the capital-labour ratio is thus a net increase. The net
e¤ect on bc1t is therefore ambiguous, but we can state the necessary condition under
which the factor price e¤ect will dominate the �scal e¤ect. By log-linearising c1t
12The dynamics of bc1t is identical to the simulated trajectory for blt in �gure 2, though larger

numerically. In �gure 3, we see that bc2t is negative in the next period (t + 1). This is because
there will be e¤ects on blt for a number of periods after the shock, which will still be (decreasingly)
higher than the steady state value in the coming periods. This increases the capital-labour ratio
and reduces interest rates. The lower interest rate in period t + 1 therefore produces a negative
change for current workers�retirement consumption, bc2t+1.
13 If the contribution rate were equal to zero, � = 0, then ��b1 = 0, and the sum of the three

e¤ects would be zero so that �lb1 = 0. The distorting e¤ects of taxation increase with the size
of the pension PAYG system, so the larger � is the larger is the di¤erence between the positive
wealth e¤ect and the negative sum of substitution and income e¤ects, and the more �lb1 increases
numerically.
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around steady state, we obtain bc1t = bwt � ( �
1�� )

b�t � ( l
1�l )

blt � b�t. The expression
is restated by inserting its law of motion:

�c1b1 = �
�
�� �

1� �

�
+

�
�� l

1� l

�
�lb1 (14)

If labour supply is exogenous the expression reduces to the �rst bracket of (14),
where the factor price e¤ect is captured by �, and the �scal e¤ect by �=(1 �
�), which is the only result in Bohn (2001). However, when labour supply is
endogenous the factor price e¤ect is adjusted in the second bracket of (14). This
latter term indicates the adjustment of both the factor price e¤ect and the �scal
e¤ect by changes in labour supply. This implies that, given reasonable parameters,
it will require either a very large pension system or an extremely high value on
leisure in utility, to overturn the result that the factor price e¤ect dominates the
�scal e¤ect, even when labour supply is endogenous14.

In a DC PAYG system pension contributions are �xed so the impact on bc1t
omits the �scal e¤ects, and only the positive factor price e¤ect remains15. Con-
sequently, workers would gain from switching to a DC system. The unchanging
contributions to pensions yield a lower total amount of bene�ts to be distributed
among retirees - thus replacements will fall and so will the rate of return on their
savings. It is clear, therefore, that a DB system automatically transfers welfare-
burdens, in terms of consumption and leisure, across generations.

3.2 A shock to life expectancy

An increase in life expectancy, b�et , is assumed to fall entirely on the length of the
retirement period, so current workers will anticipate a longer retirement period
which needs to be �nanced through higher savings. If labour supply was exogenous
there would be no factor price e¤ects because the capital-labour ratio would remain
constant (see Jensen and Jørgensen, 2008, and Bohn, 2001). However, if labour
supply is in fact endogenous a positive shock to b�et a¤ects the choice of blt and thus
the capital labour ratio.

To derive the impact on economic variables of a 1% shock to b�et we insert the
law of motion for relevant variables in (12) and obtain the elasticities in table 2.
In our numerical example the price on blt decreases (�w�e = �0:02), and since the
price on bc2t has also decreased, an unchanged level of income can buy more, so the
income e¤ect on blt , bc1t and bc2t is positive. However, lifetime income will decrease
so the wealth e¤ect is negative. We �nd that the negative wealth e¤ect will more
than o¤set the positive sum of the substitution and income e¤ects, hence the net
e¤ect on blt is �l�e = �0:05. This decrease in blt corresponds to an increase in the
intensity of labour supply: ��l�e = 0:05.
14The value of � is derived through calibration for � = 0:3 such that �

1�� = 0:28. With a value
of � = 1=3, the pension system must be relatively large (with contribution rates above 30%), or
labor supply must endogenously increase a lot, before this result is overturned. Weil (2006) �nds
a contribution rate in the US to be approx. 16% and increasing to 21% in 2030, if no government
action is taken. Furthermore, the term l

1�l = 0:67.
15The di¤erence between DB and DC systems is re�ected by the elasticity for the response

of the contribution rate to di¤erent shocks: in the DB system, ��b1 = �1, and in the pure DC
system ��b1 = 0. As such, a DC system can easily be analysed by reversing the signs in the the
log-linearised PAYG-equation: b�t = b�et�1 + b�ut + b�e2t�1 + b�u2t � b�t�1 � b�t � b�e1t�1 � b�u1t �bbt�1.
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Table 2. A shock to life expectancy
E¤ect on Analytical elasticity Value
�c1�e = [�c2k � �Rk]�k�e + (�c2�e1 � �R�e1) = �0:07

�l�e = �c1�e + �23���e � �22�w�e = �0:05

�c2�e = ��21�l�e = 0:002

�k�e =
�15�l�e��3�c1�e��4�c2�e

�5
= 0:60

The factor price e¤ect, ��l�e, is negative due to the impact on wages of a
higher labour supply. By working more intensively the contributions to the PAYG
system is spread less intensively across the working period, hence the �scal e¤ect
is positive on bc1t. The net e¤ect on bc1t is therefore, in principle, ambiguous but
our numerical example shows that the �scal e¤ect will not counteract the fall in
wages and the increase in savings (�k�e = 0:60) so the net e¤ect on bc1t is negative.

Due to �xed bene�ts in the PAYG system the only e¤ect on bc2t comes from a
positive indirect e¤ect on the interest rate (�R�e = 0:04) through the endogenous
increase in the intensity of labour supply. As a result, bc2t increases slightly (�c2�e =
0:002). If labour supply was exogenous there would be no e¤ect from the shock
on neither blt , the capital-labour ratio, nor the interest rate. This is the case
in both Jensen and Jørgensen (2008) and Bohn (2001), where bc2t is completely
una¤ected by changes in life expectancy16. Their result is now overturned, and
we �nd that a higher preference for leisure in utility () will put upward pressure
on savings, the interest rate, and bc2t, as well as downward pressure on bc1t andblt. Further robustness analyses are provided below, when we consider the optimal
policy responses to the shocks to fertility and life expectancy. Then clear message
from these robustness analyses is that all results become numerically larger17.

3.3 A shock to the retirement age

There will be economic e¤ects of changes in the statutory retirement age. These
e¤ects should be well understood by policy makers, and the purpose of this section
is to derive and interpret the impacts on key macroeconomic variables when the
retirement age changes.

The analysis assumes an exogenous shock to the retirement age, without any
presumption of who or what caused the change. This approach is chosen to em-
phazise only the economic e¤ects of the change, and leave out any judgement of
why the change has occured. Furthermore, a statutory retirement age is in fact
exogenous to the economic decisions of households. What is endogenous to the
household, on the other hand, is the e¤ective retirement age, which in this paper
is incorporated through endogenous labour supply. If the statutory retirement age

16 If the pension contribution rate, �, is zero the response of � with respect to a shock to b�et will
be zero (���e = 0). In that case, the net e¤ect on leisure would also be zero (�l�e = 0), and the
distortionary e¤ects of taxation increase numerically with the size of the pension system, and the
e¤ect on leisure will be increasingly negative.
17More details on the robustness of results can be obtained from the technical appendix, which

is available upon request.
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increases, households can decide to supply less labour �e¤ectively reducing labour
supply. This reduction could be assumed to take place in the end of the working
period and, as such, re�ect endogenous changes in the e¤ective retirement age.
In section 4, on optimal policy responses to demographic shocks, we employ the
retirement age as a policy instrument, and this analysis takes into account the
economic e¤ects, derived in this section.

An increase in the retirement age is found to directly increase labour supply,
and lower the length of the retirement period. As a result, workers save less. The
e¤ects on blt are determined directly by two elements: changes in the capital-labour
ratio, and changes in pension contributions. When labour supply is endogenous
the positive change in b�t could indirectly a¤ect blt and thus reinforce or reduce
the direct e¤ect on the capital-labour ratio. This is a case where an increase in
the statutory retirement age reduces the intensity of labour supply. The e¤ective
labour supply consequently rises initially, because the retirement age has increased,
but the fall in the intensive labour supply then reduces the e¤ective labour supply.
Our numerical simulation shows that blt is positive at �l� = 0:09 (see table 3), so the
net impact on e¤ective labour supply is a 0:89% increase, because the statutory
retirement age increases by 1%, so the endogenous response of the intensity of
labour supply is a fall by 0:09%.

Table 3. A shock to the retirement age
E¤ect on Analytical elasticity Value
�c1� = [�c2k � �Rk]�k� + (�c2�1 � �R�1) = 0:12

�l� =
[�c2k��Rk]�k�+(�c2�1��R�1)+(�23���+�22�11)

1+�22�11
= 0:09

�c2� = [�9�wk � �7�c2k + �12�Rk � �20�lk]�k�
��21�l� + �12�w� � �8��� = 0:23

�k� =
�15�l���3�c1���4�c2���2

�5
= �0:55

The substitution e¤ect on blt is positive because the the price on blt decreases
(�w� = �0:30). Return to savings increases by �R� = (1� �) (1� �l�) = 0:60,
where the direct e¤ect from b�t is (1� �) due to the lower capital-labour ratio, but
since labour supply is endogenous this e¤ect is indirectly reduced by (1� �l�).
The net e¤ect on the capital-labour ratio is still negative, and thus the net e¤ect
on returns remains positive. Consequently, the price on bc2t falls, along with the
price on blt, and retirees gain by �c2� = 0:23. Furthermore, lifetime income falls
because the wage rate falls (factor price e¤ect). In our case, this negative wealth
e¤ect will not o¤set the positive sum of the substitution and income e¤ects. Thus,
�l� = 0:09 is positive.

In terms of robustness analysis, �gure 4 illustrates that a higher preference for
leisure will increase the elasticity for blt with respect to b�t. This implies that if
households over time weigh (demand) leisure to an increasing extent, e.g. in line
with economic prosperity, then an increase in the retirement age, which yields less
lifetime leisure, will induce them to supply less and less labour.
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Figure 4. Leisure and the retirement age

Workers now have more subperiods during which they can contribute to the
�xed bene�ts of retirees. As they save less they free resources for blt and bc1t, and
this leads to a positive �scal e¤ect. The factor price e¤ect is negative, so lower
wages must now be spread over a longer working period. The net e¤ect on bc1t is
therefore theoretically ambiguous, but our simulations show that �c1� = 0:12 is
positive, which leads us to the conclusion that the negative response of savings,
together with the positive �scal e¤ect, is large enough to outweigh the negative
factor price e¤ect, the negative e¤ect on labour supply, and the increased �nancing
of a longer working period.

The combination of a negative shock tobbt�1 and a positive shock to b�et embodies
identical mechanisms as a positive change in b�t. This is because both a positive
change in bbt�1 and in b�t increases the e¤ective labour force. In addition, a positive
shock to b�et increases current workers�retirement period. Similarly, when the b�t
increases current workers expect a shorter retirement period.

4 Policy Reform

By analysing the e¤ects of shocks to fertility and life expectancy we have seen
that three main forces are operating: the endogenous intensity of labour supply, the
factor price e¤ect ; and the �scal e¤ect. The �scal e¤ect originates from the passive
pension contribution rate, which plays a major role for how the welfare e¤ects are
distributed across generations. In general, we found that the �scal e¤ects were
not su¢ cient to counteract the net factor price e¤ects and, consequently, workers
and retirees were exposed unevenly to the changes in fertility and life expectancy.
For that reason we now consider a more active policy rule for the retirement age,
in order to achieve more socially desirable outcomes. In order to evaluate the
social desirability of the results obtained in section 3, we compare those results
to a socially optimal allocation which is in accordance with society�s preferences.
If this optimal allocation di¤ers from the market allocation, we need to consider
redistributional policies.
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4.1 Welfare

This section assumes a welfare function in (15) to be maximised by the social
planner subject to the resource constraint in (8) and the utility function in (2),

� = E

� 1P
t=�1

�tN
w
t Ut

�
�
�
�t�1N

w
t�1Ut�1 +�tN

w
t Ut

	
(15)

where �0s are weights on each generation�s utility in the welfare function. As-
suming that socity�s preferences are very egalitarian, equal assigned weights to the
utility of each generation, i.e. �t�1 � �t.

The social planner derives two optimality conditions by equating the following
derivatives: @�t=@c1t = �tNw

t @Ut=@c1t, @�t=@lt = �tN
w
t @Ut=@lt, and @�t=@c2t =

�t�1Nw
t�1@Ut�1=@c2t. We derive the intergenerational optimality condition in (16)

and the consumption-leisure optimality condition in (17), both stated in e¢ ciency
units and log-linearised around steady state18.

bc1t = bc2t + ��1(b)bbt (16)

bc1t = blt + ��1(b)bbt � b�t (17)

Combining (16) and (17) yields the social planner�s welfare optimality condition in
(18) that ensures equal responses for workers and retirees to demographic changes,
which is the socially desirable outcome19.

bc2t = blt � b�t (18)

This condition for optimal intergenerational risk sharing reveals that the per-
centage change in workers�lifetime leisure (blt adjusted by b�t because of the disutil-
ity of less lifetime leisure) should equal the percentage change in the consumption
of retirees20. In case this is not replicated by the market equilibrium, economic
policy should modify this outcome by redistributing intergenerationally up to the
point where all generations are a¤ected in equal proportions. In this paper we
argue that this could be achieved by changing in the retirement age.

18When welfare is maximised, the problem is de�ned over just two generations: current workers
and current retirees. Current workers will be retirees in the next period, and at that time their
utility is weighted relative to the utility of those who are currently children. In this way the
welfare of workers are always maximised relative to the welfare of retirees. The welfare optimality
conditions in (16) and (17) therefore hold for all future periods and not just for workers and retirees
in the present period. For instance, it is clear from (16) that in each period in the future the
consumption of any generation of workers should always respond in the same proportions as the
consumption of any generation of retirees, e.g. in the next period bc2t+i = blt+i � b�t+i. A given

redistribution of income, which leaves bc2 equal to bl in the present perio, will also leave bc2 equal
to bl in all future periods. In that way, the impacts of a demographic shock is shared by current
as well as future generations.
19The log-linearised factor �1(bbt) is de�ned as ��1(b)bbt, where ��1(b) is elasticity of the weight

on �rst period consumption in utility (calibrated equal to 1 in the numerical analysis).
20Bohn (2001) de�nes this as e¢ cient risk sharing.
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4.2 Optimal policy response

This section applies the welfare optimality condition in (18) in combination with
the laws of motion for bc2t and blt, in order to obtain the set of optimal allocations.
Subsequently we solve for the optimal policy response of the retirement age for
two purposes: �rst, in order to o¤set the decline in the labour force; and secondly,
in order to achieve optimal intergenerational risk sharing.

4.2.1 The labour force

In this section, we make use of our general equilibrium framework to derive how
much the retirement age should increase in order to o¤set the decline in the labour
force historically caused by low fertility. It is important, though, which role one
assigns to the variable b�t, and we adopt the approach of treating b�t as an exogenous
variable that is under government control. The result is independent of the social
desirability of any intergenerational distribution of the associated e¤ects. The
e¤ective labour supply is dt = (1� lt) (1 + nwt ), or in log-deviations from it�s
steady state value21: bdt = b�t +bbt�1 � blt (19)

Assume �rst that the intensity of labour supply is exogenous and that we examine
a 1% decline in fertility. It is then clear from (19) that the necessary response of the
retirement age, which would o¤set the fertility decline, i.e. bdt = b�t + bbt�1 � blt �
0, would just be a proportional increase of b�t = 1%. However, if the intensity
of labour supply is indeed endogenous, so blt 6= 0, of course the response of the
retirement age would have to be di¤erent from 1%. In our case, where leisure
increases, the initial e¤ect from the fertility decline on the e¤ective labour supply
will be reinforced, and the retirement age would have to increase even more than
1%. To derive the optimal response of b�t we insert the linear law of motion for blt,b�t = [�lb1bbt�1 + �l�b�t]�bbt�1
then isolate b�t, and insert the numerical elasticities for bbt�1 = �1:

b�t = � �1� �lb11� �l�

�bbt�1 = 1:10 (20)

Observe that if �lb1 < �l� the optimal response is b�t > 1, so we conclude that
the retirement age has to increase more than fertility fell in order to o¤set the
negative impact on the e¤ective labour force. This is due to the choice of leisure by
individuals, which will increase both when fertility falls and when the retirement
age increases and thus further lower labour supply. The o¤setting response of the
retirement age, when bbt�1 = �1%, is derived to be an increase of b�t = 1:10%.

In terms of robustness analysis, when the relative weight on leisure in utility,
, increases so will the optimal response of the retirement age. This is intuitive
because the responses of leisure (�lb1 and �l�) will be larger in size and in discrep-
ancy. Consequently, there is a tendency for labour supply to fall even further, and
this must be counteracted by larger and larger increases in the retirement age.
21 In terms of our analytical framework, the growth rate of the population is nwt = 1 + bt�1,

and the net growth rate is nwt = �tbt�1. We have to incorporate the intensity of labour supply
as well, though, and this is accounted for by scaling net labour supply by (1� lt).
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4.2.2 The retirement age

Proposals for analysing the retirement age as a policy instrument are found in
e.g. de la Croix et al (2004) and Andersen, Jensen and Pedersen (2004)22. By
considering the composite shock to fertility of bbt�1 = �1% and life expectancyb�et = 1% the recursive equilibrium law of motion for blt and bc2t can be inserted into
(18) to yield (21). Solving for b�t provides the percentage change in the retirement
age that ensures a socially optimal intergenerational allocation in (22), where the
optimal policy response is b�

tjbb1;b�e = 0:25%.
�c2�b�t + �c2b1bbt�1 + �c2�eb�et = �l�b�t + �lb1bbt�1 + �l�eb�et � b�t (21)

b�
tjbb1;b�e =

�
�lb1 � �c2b1

�c2� � (�l� � 1)

�bbt�1 + � �l�e � �c2�e
�c2� � (�l� � 1)

� b�et = 0:25 (22)

The composite shock entails dynamics that turns out to be counteracted by the
change in the retirement age, and the sum of e¤ects for bc2t and workers� lifetime
leisure (blt � b�t) is exactly the same when the policy rule for the retirement age isb�t = 0:25%. By disaggregating the dynamics we �nd that the optimal reponse ofb�t for a shock to only bbt�1 is b�t = 0:30, and for a shock to only b�et is b�t = �0:05.
Adding these partial results, yields the net result of exactly b�t = 0:25%. There are
two key dynamics in play: First, a negative shock to bbt�1 will reduce the current
labour force and bring about a series of e¤ects on other macroeconomic variables.
A policy response of b�t > 0 will counteract this reduction in the labour force, as
well as all the initial e¤ects on other variables. Secondly, the retirement period
is residually lowered by an increase in the retirement age, but the increase in b�et
counteracts this e¤ect23.

In terms of robustness analysis, if the weight on leisure in utility () increases
we obtain a smaller optimal response of �. This seems plausible, since a higher
 causes higher disutility of less lifetime leisure for workers. Consequently, the
more valued leisure is the less the retirement age has to increases to equalise the
welfare responses of workers and retirees. The policy recommendation is therefore
to establish an indexation scheme of retirement age relative to life expectancy in
order to ensure optimal welfare distributions across generations24.

22 In addition, Cutler (2001) recommends an extention of Bohn (2001) to incorporate "the length
of the period where people work".
23Jensen and Jørgensen (2007) obtain a 1:1 optimal response of the retirement age because,

�rst, they do not scale leisure in utility by the retirement age, and second, they do not have
endogenous labour supply in their model.
24Even though we argue that an increase in taxes may not be realistic and optimal in relation to

labour supply incentives and distortions we can still derive the optimal response of the contribution
rate for the composite shock to fertility and life expectancy. We derive that the optimal response

of the contribution rate should equal: ��jbb1;b�e = [�l�e��c2�e]!6!12�[�c2k��Rk]!7+!11�!9
!10!12 ��23!6+ !2!8

= �1:9,
which means that for bbt�1 = �1 the contribution rate should increase by approximately 2%, This
is more than the 1% it automatically does through the passive PAYG system. For a detailed
account of this analysis consult Jensen and Jørgensen (2007). Alternatively, a detailed appendix
to this paper is available upon request (!�s denote combinations of steady state variables and
model parameters).
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5 Conclusion

Fertility decline and increases in life expectancy excert strong upward pressure
on dependency ratios. A key impact on welfare is that di¤erent generations may
be a¤ected in di¤erent proportions, which may not be socially desirable, so there
may be a role for government policy to redistribute across generations to achieve
a more equitable outcome.

The retirement age is likely to be the preferred policy instrument, so we incor-
porate the retirement age into a stochastic OLG model with endogenous labour
supply and ask two questions: �rst, what are the e¤ects on di¤erent generations
in terms of welfare? Secondly, can a policy rule for the retirement age be designed
in order to o¤set any adverse dynamics? We �nd that workers and retirees are
a¤ected unevenly for changes in fertility, life expectancy, and the retirement age,
respectively. The endogeneity of labour supply is found to either counteract or
reinforce these changes - which has a major impact on the distribution of welfare
across generations.

We have then considered whether these unequal distributions are in accordance
with social preferences. This is not the case, and redistribution is therefore neces-
sary in order to equalise the e¤ects across generations. With this motivation we
derive an optimal policy rule for the retirement age.

We are interested in adapting this policy rule for the retirement age to two
circumstances: �rst, by how much should the retirement age increase to o¤set the
decline in the labour force due to the historical fertility fall? We �nd that the
retirement age has to increase by more than fertility fell, i.e. the optimal increase
in the retirement age should be 1.1% whenever fertility decreases by 1%. This is
because labour supply endogenously falls when fertility falls; when life expectancy
increases; and when the retirement age increases.

Second, by how much should the retirement age change to redistribute the wel-
fare burdens more equally across generations in accordance with social preferences?
In this case an optimal policy rule is also to increase the retirement age, taking
into account, however, the disutility for workers of less lifetime leisure when the
retirement age increases. For that reason, the optimal response of the retirement
age is less than 1:1 with the change in life expectancy. A policy rule where the
retirement age is linked to life expectancy in a 1:4 relationship is found to ensure
that both workers and retirees bear the burdens of the demographic changes in
proportions that are more equitable.

We �nd that leisure increases when the retirement age increases so this could
be interpreted as an endogenous change in the voluntary early retirement age. In
this perspective, we argue that increasing the retirement age will induce workers to
retire earlier, based on their own �nancing, and this is exactly the opposite of what
is intended by the policy rule. As a result the retirement age has to increase even
more than it should when leisure is not an important welfare good. This argument
is founded on our key �nding that leisure tends to increase when fertility falls and
to decrease when life expectancy increases.

Our analyses are very robust to changes in the weight on leisure in utility, which
is a relatively unknown parameter. However, the analytical framework is subject
to a couple of limitations. The utility function has been modelled in accordance
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with our best beliefs of how to incorporate the value of leisure and the lengths
of periods. Our future research will examine the robustness of our result in more
detail for varying speci�cations of the utility function. In addition, we assume
that the economic impacts of changes in dependency ratios can be analysed in
a linearised model. Simulation excercises with CGE models could in the future
be performed for more empirical perspectives on our approach, but in this paper
we highlight the analytical tractability that allows for an exact solution for policy
rules. This is not feasible with a CGE model.

The fact that the valuntary early retirement age in developed countries has
a negative correlation with life expectancy means that the latter should perhaps
be endogenous to the former. A related question in the ageing debate is also
whether the additional years that people are expected to live will actually be more
or less healthy years. All of the above extensions are relevant to future research.
The derivation of an optimal policy rule for the retirement age, in a setting with
endogenous labour supply, is a productive starting point.
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A Solving Stochastic OLG Models Analytically25

In this section a closed form solution for the stochastic OLG model is derived. The
method of undetermined coe¢ cients (M.U.C.) is used to obtain an "analytical"
solution for the recursive equilibrium law of motion - charaterized by providing
the solution in terms of analytical elasticities26. By adopting this approach the
non-linear OLG model is replaced by a log-linearised approximate model with
variables in percentage deviations from the steady state. A less advanced version
of the M.U.C. was �rst applied on OLG models by Andersen (1996, 2001) and
Bohn (1998, 2001) in models without endogenous labour supply and without an
indicator for length of working period.

When endogenous labour supply is incorporated in this paper, together with
the pension system, the less advanced version of M.U.C. applied by Bohn (2001)
and developed in Jørgensen (2006) can no longer be applied. These papers employ
only one state variable, but now at least one additional state variable must be
de�ned to solve the model, which is feasible with a version in matrix notation of
M.U.C. in Uhlig (1999). This solution method has to our knowledge not previously
been applied in the literature in the context of stochastic OLG models.

In our stochastic OLG model there are not only variables for current demo-
graphic changes but also for expected future demographic changes27. The M.U.C.
in Uhlig (1999), which is stated in matrix notation, due to the ultimate solution
of a generalized eigenvalue problem in matrix notation, cannot analyse expected
future demographic changes in its current setup. We consequently label this a

25This appendix provides a short version of the analytical steps one must go through to solve
this type of model with the method of undetermined coe¢ cients. A version of this appendix that
contains all derivations are available upon request.
26The term "analytical" is used in this context since the solution of the model relies not directly

on numerical simulations, which is the usual practice for OLG models, but instead on an algebraic
derivation of the model.
27For instance the length of life in t+ 1, denoted by �t+1 in the model.
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"Matrix-based" method and accept that it can be used only to solve for current
demographic changes. However, a method that can actually handle the expected
future demographic changes is subsequently developed in this paper, in which
equations are kept in their original log-linearised form. Therefore, this is labeled
an "Equation-based" method.

“Matrix-based” method
Uhlig (1999)

“Equation-based” method
(This paper)

Eigenvalues

Elasticities for expected future shocksElasticities for current shocks

Figure 1A. The combination and output of methods

Our discussion above implies that if intensive labour supply is to be endog-
enized, and if the model is to be solved analytically, then a combination of the
Matrix-based and the Equation-based methods must be applied in order to handle
both current and expected future demographic changes. In this section a pro-
cedure for this combination is developed, and a representation of the important
link between the methods is illustrated in Figure 1A. The Equation-based method
builds on the Matrix-based method�s ability to solve a matrix quadratic equation
as a generalized eigenvalue problem and �nd the elasticities of endogenous state
variables with respect to (w.r.t) their own lagged values (the eigenvalues). Both
methods can be used to derive elasticities for current demographic changes, but
only given that the Matrix-based method is �rst used to derive the eigenvalues.
As such, only the Matrix-based method is capable of deriving the eigenvalues; and
only the Equation-based method is capable of deriving the elasticities of expected
future demographic changes.

Since we are interested in the analytical expressions for elasticities we only
use the Matrix-based method to derive eigenvalues, and use instead the Equation-
based method to derive all the expressions both for current and expected future
demographic changes, respectively. In �gure 2, therefore, the irrelevant arrow is
punctured. The structure of the remainder of this section will be in accordance
with the procedure we have developed for obtaining an analytical solution to the
stochastic OLG model with the combination of a Matrix-based and an Equation-
based M.U.C.:

1. Solution of the model with the Matrix-based M.U.C. - with the purpose of
deriving eigenvalues

2. Development and application of the Equation-based M.U.C. with the purpose
of deriving elasticities for current and expected future demographic changes
- based on the eigenvalues derived with the Matrix-based method
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A.1 Matrix-based Method of Undetermined Coe¢ cients

The solution method for our stochastic OLG model is based on the analytical ap-
proach to solving stochastic dynamic general equilibrium models with the M.U.C.
in Uhlig (1999)28. The key technical innovation in this paper is to combine a sto-
chastic OLG model with an analytical solution method, which is constructed to
handle an unlimited number of state variables with the ultimate solution of a gen-
eralized eigenvalue problem. Before we solve the model, following the procedure
described below, the model is log-linearised around steady state, such that the
original non-linear model is replaced by an approximate log-linearised model29.
Variables denoted with "hats" are log-linearised variables in percent deviations
from steady state, while variables without subscripts are steady state variables30.

All endogenous variables from the log-linearised model, bet 2 fbkt;bc2t ; bc1t ; blt;byt; bRt; bwt; b�tg, are written as linear functions of a vector of endogenous and
exogenous state variables, respectively. The vector of endogenous state variables
is bxt 2 fbkt; bc2t g of size m � 131, the vector of endogenous non-state variables isbvt 2 fbc1t ; blt; byt; bRt; bwt; b�tg of size j�1, while the vector of exogenous state variables
is bzt 2 fb�t�1; b�t; bat; bbt�1; bbt; b�et�1; b�et ; b�ut g of size g�1. The log-linearised equations
are in written matrix notation in the following equilibrium relationships,

0 = Abxt +Bbxt�1 +Cbvt +Dbzt (23)

0 = Et [Fbxt+1 +Gbxt +Hbxt�1 + Jbvt+1 +Kbvt + Lbzt+1 +Mbzt] (24)bzt+1 = Nbzt + "t+1; Et ["t+1] = 0 (25)

whereC is of size h�j, where h denotes the number of non-expectational equations.
In this particular OLG model h = j, due to the de�nition of bxt = fbkt; bc2t g, because
with merely the capital stock as a state variable h < j, and the system cannot not
be solved32. The matrix F is of size (m+ j� h)� j, and it is assumed that N has
only stable eigenvalues.

The recursive equilibrium is characterized by a conjectured linear law of motion
between endogenous variables in the vector bet, and state variables (endogenous and
exogenous, respectively) in the vectors bvt and bzt. The conjectured linear law of
motion is written as, bxt = Pbxt�1 +Qbzt (26)

28The solution for eigenvalues in this section relies directly on a certain special case of the
method in Uhlig (1999) to whom we refer for details of propositions and proofs. His method is
inspired by the method in Campbell (1994).
29The rules for log-linearization are standard (see Uhlig, 1999). However, when growth rates

are involved in the log-linearization process it is assumed that (1 + at) � at and in steady state
(1 + a) � a, i.e. the term "1+" surpressed for notational convenience, so that bat = ln(at)� ln(a)
instead of bat = ln(1+ at)� ln(1 + a). The ��s and !�s in the equations are coe¢ cients composed
by steady state variables.
30The equations that characterize the equilibrium of the stochastic OLG economy and must

be log-linearized are: the resource constraint, second period consumption, the Euler equation, the
consumption-leisure optimality condition, income, wages, returns, and the PAYG system.
31 In order to solve the model it is necessary to have at least as many state variables as there

are expectational equations in the model (h � j).
32Note that if h > j the equations in this section become slightly more complicated, see Uhlig

(1999), but a solution is still feasible.
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bvt = Rbxt�1 + Sbzt (27)

where the coe¢ cients in the matrices P, Q, R, and S are interpreted as elasticities.
These linear relationships between endogenous variables and state variables could
alternatively be written out for each variable in bet., as e.g for leisure, blt,blt = �lkbkt�1 + �lc2bc2t�1

+�l�1b�t�1 + �l�b�t + �labat + �lb1bbt�1 + �lbbbt + �l�e1b�et�1 + �l�eb�et + �l�ub�ut
where e.g. �la denotes the elasticity (�) of leisure (l) w.r.t. productivity (a). The
stability of the system is determined by the stability of the matrix P, given the as-
sumptions on the matrix N. By inserting (26) and (27) into the non-expectational
equation (23) the matrices R and S can be derived to be,

R = �C�1 (AP+B) (28)

S = �C�1 (AQ+D) (29)

The matrix-quadratic equation (30) to be solved for the matrix P and equation
(31) to be solved for Q can be derived by inserting equations (25)-(28) into the
expectational equation (24). From (30) the matrix-quadratic equation in (32)
emerges, composed by (34)-(36). From (31) the matrix Q can be identi�ed in (33)
where Ig is the identity matrix of size g � g, following Uhlig (1999).

0 =
�
F� JC�1A

�
P2 +

�
JC�1B�G+KC�1A

�
P�

�
KC�1B�H

�
(30)

0 = FPQ+ FQN+GQ+ JRQ+ JSN+KS+ LN+M (31)

0 = 	P2 + �P�� (32)

vec
��
JC�1D� L

�
N+KC�1D�M

�
(33)

=
�
N0 


�
F� JC�1A

�
+ Ig 


�
JR+ FP+G�KC�1A

��
vec (Q)

	 = F� JC�1A (34)

� = KC�1B�H (35)

� = JC�1B�G+KC�1A (36)

It is clear from equations (28)-(30) and (33) that in order to obtain a solution
it is required that C is invertible33. The matrix-quadratic equation (32) is solved
as a generalized eigenvalue-eigenvector problem, where the generalized eigenvalue,
�, and eigenvector, q, of matrix � with respect to � are de�ned to satisfy,

��q = �q

33 In case C is not directly invertible, Uhlig (1999) provides the method for a pseudo-inverse.
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0 = (�� ��) q

given that matrices � and � are de�ned as:

� =

�
� �
Ig 0g;g

�

� =

�
	 0g;g
0g;g Ig

�
For this particular OLG model � is invertible so the generalized eigenvalue prob-
lem can be reduced to a standard eigenvalue problem of solving instead the expres-
sion ��1� for eigenvalues-eigenvectors, as in (37). Then, ��1� is diagonalized
in (38) since each eigenvalue, �i, can be associated with a given eigenvector, qm.�

��1�� �I
�
q = 0 (37)

P = 
��1�

�1

(38)

The matrix��1� =diag (�; :::; �m) then contains the set of eigenvalues from which
a saddle path stable eigenvalue can be identi�ed, and the matrix 
 = [q1; :::; qm]
contains the characteristic vectors. Ultimately, the matrix P, governing the dy-
namics of the OLG model, is derived, and the system can be "unfolded" to provide
the elasticities in the matrices Q; R; and S.

The elasticities of endogenous variables with respect to current demographic
changes have now been derived. The expected future demographic changes (exoge-
nous state variables in period t + 1) cannot be treated directly by this method,
however, since the Matrix-based method, by construction, is only capable of han-
dling demographic changes in period t. Therefore, the next section will develop
the Equation-based method to analyse the elasticities of variables with respect to
expected future demographic changes.

A.2 Equation-based Method of Undetermined Coe¢ cients

The Equation-based method has a strong link to the Matrix-based method: the
latter method provided the eigenvalues, �kk and �c2c2, to be directly incorporated
into the Equation-based approach, as illustrated in Figure 234. Below, we develop
a three-step procedure to derive analytical expressions for all elasticities; both for
current demographic changes and for expected future demographic changes, but not
for the eigenvalues35:

34The remaining elasticities for all variables in the vector bet with respect to current shocks
could be derived from the matrices Q; R; and S. However, we choose to employ the Equation-
based method to derive these, because it is less cumbersome to derive analytical expressions for
elasticities with this method rather than with the Matrix-based method.
35The Equation-based method is relatively similar to the version in Uhlig (1999; section 3.8.3).

My version ensures that the model can also be solved with expected future shocks.
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1 The �rst step is to take the log-linearised equations and substitute with laws
of motion for all variables. If variables enter in period t + 1 the law of motion is
substituted in forwarded form, which requires that one inserts the laws of motion
for endogenous state variables. This procedure provides equations where the sum
of all exogenous demographic changes, multiplied by a coe¢ cient for each shock
will equal zero. Appendix A.3 gives an example with the resource constraint, but
this procedure must be applied to all eight log-linearised equations.

2 The second step is to collect from all log-linearised equations the coe¢ cients for
each current shock. As an example this is done in Appendix A.3 with the variable
for lagged fertility, bbt�1. Then solve the equations for the unknown elasticities
for current demographic changes. The elasticity of leisure with respect to lagged
fertility, �lb1, can then as an example be derived in (39):

�lb1 = [�c2k � �Rk]
�12�wb1 � �21�lb1 � �8��b1

�9�wk � �7�c2k + �12�Rk � �20�lk
+�23��b1��22�wb1 (39)

3 The third step is to derive elasticities for expected future demographic changes.
These elasticities depend on current period elasticities, as for instance �lb1 in (39).
As an example, the coe¢ cients for endogenous variables w.r.t. life expectancy,b�et , are derived in Appendix A.3. The solution is characterized by the necessity
of substituting the equilibrium law of motion for endogenous state variables once
more than for current demographic changes. The elasticity for leisure w.r.t. life
expectancy, �l�e, is derived as an example in (40):

�l�e = [�c2k � �Rk]�kb1 + �23���e � �22�w�e + (�c2�e1 � �R�e1) (40)

This completes the presentation of the Matrix-based method in section A.1 and
the development of the Equation-based method in section A.2. The combination
of these two methods, as illustrated in Figure 1A and described in the three-step
procedure above, will provide all the elasticities for the recursive equilibrium law
of motion for the stochastic OLG economy. The purpose of the following section
is to interpret these elasticities, both theoretically and numerically, and to employ
them in policy re�ections on intergenerational welfare. This involves calibrating
the model using what we believe are realistic parameter values, as shown in table
1, and simulating the model using a Matlab routine (available upon request).

A.3 Reduced equations for the solution for elasticities

The resource constraint is used as an example for step 1 in the Equation-based
method. The log-linearised resource constraint is;

0 = �1bkt�1 � �5bkt + �15blt � �3bc1t � �4bc2t
+�4b�t�1 � �14b�t � �2bbt�1 � �4b�et�1 � �4b�ut (41)

Example of Step 1 After substituting the laws of motion for all variables the
equation is transformed to:

27



0 = bkt�1 (�1 + �15�lk � (�5 + �3�c2k � �3�Rk)�kk)
� b�t�1 (�4�c2�1 � �15�l�1 � �4 + (�5 + �3�c2k � �3�Rk)�k�1)
� b�t (�4�c2� � �15�l� + �3�c2�1 � �3�R�1 + �14 + (�5 + �3�c2k � �3�Rk)�k�)
� bbt�1 (�4�c2b1 � �15�lb1 + �2 + (�5 + �3�c2k � �3�Rk)�kb1)
� b�ut (�4�c2�u � �15�l�u + �4 + (�5 + �3�c2k � �3�Rk)�k�u)
� b�et (�4�c2�e � �15�l�e + �3�c2�e1 � �3�R�e1 + (�5 + �3�c2k � �3�Rk)�k�e)

Example of Step 2 As an example of the solution method we solve for the
elasticities of endogenous variables with respect to the current change in lagged
fertility, bbt�1. The coe¢ cients from equations like the resource constraint above
are collected from all eight log-linearised equations.

0 = �f�4�c2b1 � �15�lb1 + �2 + (�5 + �3�c2k � �3�Rk)�kb1g (42)

0 = f[�9�wk � �7�c2k + �12�Rk � �20�lk]�kb1 + (43)

�12�wb1 � �21�lb1 � �8��b1g

0 = f[�c2k � �Rk]�kb1 � �c1b1g (44)

0 = f�c1b1 + �23��b1 � �lb1 � �22�wb1g (45)

0 = f�11 (�lb1 � 1)� �yb1g (46)

0 = f��10�lb1 � �Rb1 + �10g (47)

0 = f���b1 � 1g (48)

0 = �f�11 + �wb1 � �11�lb1g (49)

The equations (42)-(49) can be solved for the eight unknown elasticities, as for
instance the elasticity of leisure with respect to lagged fertility, �lb1 (equation 39).

Example of Step 3 As an example of the solution method we solve for the
elasticities of endogenous variables with respect to the current change in life ex-
pectancy, b�et .
0 = �f�4�c2�e��15�l�e+�3�c2�e1��3�R�e1+(�5 + �3�c2k � �3�Rk)�k�eg (50)

0 = f[�9�wk � �7�c2k + �12�Rk � �20�lk]�k�e + �12�R�e1 � (51)

�7�c2�e1 � �20�l�e1 + �9�w�e1 � �12 � �21�l�e + �12�w�e � �8���eg

0 = f[�c2k � �Rk]�k�e � �c1�e + �c2�e1 � �R�e1g (52)

0 = f�c1�e + �23���e � �l�e � �22�w�eg (53)

0 = f�11�l�e � �y�eg (54)

0 = f��10�l�e � �R�eg (55)

0 = �f�w�e � �11�l�eg (56)

0 = f����eg (57)

The equations (50)-(57) can be solved for the eight unknown elasticities, as for
instance the elasticity of leisure with respect to life expectancy, �l�e.
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B Calibration of the model

Parameter Calibration Interpretation
� 1=3 Capital share in output
� 0:30 Replacement rate36

a 0:40 Steady state productivity growth rate
� 1 Rate of depreciation in capital
� 1 Length of working period
� 1:9 Total length of adult life
� n.a. Length of retirement period (residual)
b 0:1 Growth rate of the number of children
 1 Weight of leisure in utility

��1(b) 1 Elasticity of the weight of �rst period consumption
in utility with respect to the birth rate

�2 0:296 Consumption discount rate37- calibrated so the
savings rate is equal to exactly 20%

Table 1B. Calibration of the model

36The payroll tax rate will then be � = � (�� �) = (1 + nw) = 0:25.
37The calibration of the discount rate equals 0:963 per year or 0:296 over a 30 year period.
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