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Abstract

We consider a congested facility where agents can line up at any time they wish
after the facility opens (like airplane boarding, or drivers leaving stadium parking
lots after a sports event). We show that in Nash equilibrium, within the general
family of stochastic queue disciplines with no capacity waste, the focal first-in-first-
out (FIFO) queue discipline is the worst while the last-in-first-out (LIFO) discipline
is best.

1 Introduction

We model a congested facility that serves agents with a fixed capacity from a given point
in time. Agents decide themselves when to line up for service, but they cannot line up
before service begins. Situations that can be modeled in this way include passengers
at the airport waiting to board a flight, a crowd exiting a theater area after a concert,
and morning commute where drivers are only allowed to arrive at the bottleneck from a
given point in time (due to environmental restrictions, say).

Our setting is related to the classical bottleneck model of Vickrey (1969), further
analyzed and extended by Arnott et al. (1993), De Palma and Fosgerau (2009) and
others, that models congestion arising from the existence of a single bottleneck in the
context of morning commute and trip timing. The bottleneck is here open at all times,
but agents have a preferred time for passing the bottleneck. In a somewhat different
setting, Glazer and Hassin (1983) modeled equilibrium arrival patterns to a server with
opening (and closing) time. Among the subsequent extensions and variations of this
model, recent contributions include Jain et al. (2011) and Hassin and Kleiner (2011).
Resemblances exist between this literature and the present paper, and in particular, we
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consider in line with Hassin and Kleiner (2011) a setup where early arrivals are not
allowed.

The most commonly analyzed queue discipline in the literature on queueing with
endogenous arrival times is the first-in-first-out (FIFO) queue discipline (also known as
first-come-first-served). FIFO is generally considered as ‘fair’ and is the focal discipline
in many everyday situations, such as queueing at a grocery store or bank, as well as
under more serious circumstances such as in the allocation of donor organs to patients
at the waiting list. However, while FIFO is intuitively fair and acceptable to most people,
it may not be the best way of settling a queue. In fact, as we will show, in out setting
it is the least desirable way of settling a queue.

In the context of Vickrey’s bottleneck model, De Palma and Fosgerau (2009) consider
risk-averse agents and a family of stochastic queue disciplines, ranging from FIFO to a
completely random queue, which (to a vanishing degree) gives priority to early arrivals.
They define a ”no residual queue” property, which holds when there is no queue at the
time the last user arrives at the queue, and prove that this property holds in equilibrium
under all queueing regimes considered. Remarkably, they show that all queue disciplines
within their family provide the same equilibrium utility and welfare. Thus, existing lit-
erature on queueing with endogenous arrival times has largely assumed FIFO discipline,
or suggest that the queue discipline itself is irrelevant for equilibrium utility and welfare.

In this paper, we obtain a radically different conclusion for our model. We consider
(pure strategy) Nash equilibria for a general familiy of stochastic queue disciplines with
full capacity use. We show that with a linear cost for waiting in queue the FIFO is
the worst discipline in terms of equilibrium utility and welfare, while the Last-In-First-
Out (LIFO) queue disciplines is the best. Thus, these two queue disciplines provide an
upper and lower bound for equilibrium utility/welfare under general stochastic queue
disciplines.

The paper is organized as follows. In section 2, the model and key terms and assump-
tions are presented. Section 3 contains the results. Section 3.1 presents some preliminary
results, and in section 3.2, the FIFO discipline is considered, while 3.3 concerns the LIFO
discipline.

2 Model

2.1 Basics

Suppose that at time 0 a facility opens that can serve agents with a given fixed capacity.
The capacity-use of each agent is assumed to be negligible, and the set of agents is
identified with [0, 1].

The bottleneck capacity at each unit of time is k. With full capacity use, all agents
are therefore served at time 1/k.

Let R(t) be the cumulative arrival distribution (CAD) giving for each t the share
of agents that have arrived at the bottheneck up until time t. We assume that R(t)
is left-differentiable where continuous, and denote the left-derivative of R(t) as R′−(t),
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whenever defined. We will interpret the left-derivative as the rate (speed) at which
agents arrive at any point in time where the CAD does not contain a jump. Figure 1
shows an example CAD.

R(t)

t

1

1/k

Figure 1: Example of a CAD

Let Q(t) be the backlog at time t. We can think of Q(t) as the number of agents
who have joined the queue at latest at time t but remain unserved. In line with the
literature, we occasionally refer to Q(t) as the queue length at time t.

2.2 Agent preferences

All agents have identical preferences. Each agent wants to be served as early as possible
and spend a minimum of time in the queue.

We assume that there is a waiting cost c for each unit of time wasted in queue.
The willingness-to-pay for being served at time t is given by the continuous and strictly
decreasing function w(t).

The utility of an agent arriving at time s and being served at a time t after queuing
for t− s units of time is then w(t)− c(t− s). We normalize w(t) such that w(1/k) = 0.
When serving time is stochastic, an agent’s preferences are governed by the expected
utility of the agent.

2.3 Queue discipline

The cumulative serving time distribution for an agent joining the queue at time s is
denoted T s(t). For each t, T s(t) gives the cumulative probability that an agent arriving
at time s has been serviced by time t. A profile of cumulative serving time distributions
(one for each arrival time s) is feasible if the total “mass” of agents served in any interval
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of time does not exceed serving capacity.1

A queue discipline is a mapping that associates with a given cumulative arrival
function R(t) a feasible profile of cumulative serving time distributions. In other words,
a queue discipline is a rule that describes when agents can expect to be served, given a
specific arrival pattern.

We say that a queue discipline has no capacity waste if for any R(t) where R(t) ≥ kt
for all t, all agents are serviced by time 1/k.

2.4 Equilibrium and optimality

Given a queue discipline with no capacity waste, the expected utility of an agent arriving
at time s is denoted by EU [T s(t)]. Note that the expectations exist as long as the queue
discipline is terminating. Let t denote the point in time, where an agent is serviced.
Then, the expected utility of an agent arriving at time s will equal:

EU [T s(t)] = E[w(t)− c(t− s)]. (1)

Let W s = t − s denote the waiting time of an agent that joins the queue at time s
and is serviced at time t, and let E[W s] denote the expected waiting time that can be
induced from the cumulative serving time distribution T s(t). We may then write:

EU [T s(t)] = w(s+ E[W s])− c(E[W s]). (2)

Given a queue discipline, an arrival distribution, R(t), is a (Nash) equilibrium if no
agent can unilaterally improve his expected utility by choosing another arrival time. We
then say that the arrival distribution is supported by the queue discipline.

A queue discipline is welfare optimal if it supports an equilibrium arrival distribution
that gives the highest possible expected utility of all equilibria supported by a queue
discipline.

1Formally, ∑
t,where R(t) has jump It,

and 0≤t≤y

It · T t(y) +

∫ y

0

R′−(t)T t(y)dt−

∑
t where R(t) has jump It,

and 0≤t≤x

It · T t(x) −
∫ x

0

R′−(t)T t(x)dt ≤ k(y − x),

for any 0 ≤ x < y, Where R′−(t) denotes the left-derivative of R. Note that the specification of the
cumulative serving time distribution for agents that arrive at a point in time s where arrival density is
zero (i.e. where R′−(t) = 0) is of no importance for feasibility. However, we may assume that they are
treated the same as every other agent.
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3 Results

3.1 Preliminary results

First we state some general observations about queue disciplines and equilibrium cu-
mulative arrival distributions. Note that throughout the paper, we limit ourselves to
consider queue disciplines with no capacity waste.

We are interested in comparing the welfare that arises in equilibrium under different
queue disciplines. Two observations regarding comparison of welfare between equilibria
under different queue disciplines are stated in the lemma below. Figure 2 provides an
illustration of the type of situation considered in the second part of the lemma below.

Lemma 1. Let R(t) ≥ kt be a Nash equilibrium under queue discipline 1, and let
S(t) ≥ kt be a Nash equilibrium under queue discipline 2. Then (a): If R(t) = S(t) for
all t, equilibrium utility and hence welfare is the same under the two queue disciplines.
(b) If R(t) ≥ S(t) for all t, and the inequality is strict for some time interval, then
equilibrium utility is higher at S(t).

Proof. For the first part, assume that equilibrium utility is greater at R(t) than S(t).
Then for an player arriving at s, E[W s] must be greater under S(t) than R(t), and this
holds for all s ∈ [0, 1

K ]. However, since R(t) = S(t) for all t, total waiting time is the
same under both disciplines, a contradiction. For the second part: since R(t) ≥ S(t) for
all t, total waiting time is greater at R(t) than at S(t). Therefore, there is an arrival
time s such that the expected waiting time when arriving at s is greater for R(t) than
for S(t). This implies that expected utility when arriving at s is lower for R(t) than for
S(t), and equilibrium utility is therefore lower at R(t).

t

S(t)

R(t)1

1/k

Figure 2: R(t) ≥ S(t) ≥ kt

In the following subsections we consider more specifically the FIFO and LIFO disci-
plines.
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3.2 First-in-first-out (FIFO) queue discipline

Consider the FIFO queue discipline under which agents are served in order of arrival
and as soon as capacity becomes available.

For an agent arriving at a time t where R(t) has no jump, time of service is determin-
istic. He will be serviced as soon as every agent in the existing queue has been serviced.
(Technically, the cumulative serving time distribution is a unit step function for each
arrival time s). For agents arriving at a jump, time of service is uniformly distributed
over an interval. Every agent already in queue must be serviced before him, and some
(in expectation, half) of the agents arriving at the jump will be serviced before him as
well.

Next, we turn to the analysis of Nash equilibrium in arrival patterns under FIFO.

Lemma 2. Let R(t) be a Nash equilibrium for the FIFO queue discipline. Then R(t) is
Lipschitz continuous.

Proof. If R(t) is supported by FIFO, the slope of R(t) can not exceed k for any interval
[t1, t2], with 0 < t1 < t2 ≤ 1

k . If this was the case, waiting time would be increasing
with t in this interval, implying that a player with arrival time t ∈]t1, t2], could increase
expected utility by arriving instead at t1, since this would imply both a shorter waiting
time and earlier service. Thus, the slope of R(t) is less than k on the interval ]0, 1k ],
implying that |R(t2) − R(t1)| ≤ k|t2 − t1|, for all t1, t2 with 0 < t1 < t2 ≤ 1

k , and it
follows that R(t) is Lipschitz continuous.

Note that for the FIFO discipline, although R(t) has no jumps for t > 0, by Lemma
2, we may have R(0) > 0, i.e. a non-zero fraction of the agents may arrive at time 0.

Let R′−(t) denote the left-derivative of R whenever defined. Since R(t) is Lipschitz

continuous (and hence absolutely continuous) we have R(t) = R(0) +
∫ t
0 R
′
−(x)dx.

In case not all agents arrive at time 0, the following result holds:

Lemma 3. Suppose R(t) is a Nash equilibrium for the FIFO queue discipline and R(0) <
1. Then the last agent that arrives is served immediately (i.e. the “no residual queue
property” holds)

Proof. Let r = min{t|R(t) = 1} and R(0) < 1, and assume that r < 1
k . Then since

R(0) < 1, and there are no jumps for t > 0, servicetime is deterministic and equal to
1
k for a player arriving at r. This player could therefore increase expected utility by
postponing arrival until t = 1

k in which case he would be serviced at time t = 1
k while

avoiding waiting time entirely.

Thus, by no capacity waste and Lemma 3, we have R(1/k) = 1, and if R(0) < 1 we
have R(t) < 1 for all t < 1/k.

Before we go any further, we would like to establish existence of an equilibrium
arrival profile under FIFO.

Lemma 4. There exists a cumulative arrival distribution supported by FIFO
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Proof. Let R(t) be the CAD with R(0) = 1. Then, either the expected utility of arriving
at time 0 is greater than the utility from arriving at t = 1

k , in which case R(t) is an
equilibrium since no agent can profitly deviate, or the opposite is true, and R(t) is not
supported by FIFO.

Assume that all agents arrive at time 0 is not an equilibrium. In this case, we provide
a constructive argument for the existence of an equilibrium.

Let I be the fraction of agents that would have to arrive at time 0 in order for the
expected utility of these agents to equal w(1/k). Note that I exists and is uniquely
determined.

Note also that a player arriving immediately after time 0 will at best be serviced
at time I

k . For t sufficiently small, an agent arriving in the interval from 0 to t, could
therefore increase expected utility by arriving at 0 instead. This implies that the jump at
0 will be followed by a period of time where the density function vanishes, and no ‘mass’ of
agents arrives. Next, let t∗ between 0 and I/k be the point where w(I/k)−c(I/k− t∗) =
w(1/k), i.e., we choose t∗ such that an agent obtains the same expected utility from
arriving at t∗ and being served at time I/k as from arriving at time 0.

For any s with t∗ ≤ t ≤ 1/k, define x(s) such that s ≤ s+ x(s) ≤ 1/k and

w(s+ x(s))− cx = w(1/k),

i.e., for an agent arriving at time s, x(s) is the waiting time that gives the agent the same
expected utility as the agents arriving at time 0. Note that x(s) exists and is uniquely
determined for each s. Moreover, x(s) is strictly decreasing and continuous, s+ x(s) is
strictly increasing, and x(s)→ 0 for s→ 1/k.

Now, define R(s) such that R(s) = I for, 0 ≤ s ≤ t∗, and R(s) = k(s + x(s))
for t∗ < s ≤ 1/k. Then by construction R(s) is an equilibrium arrival distribution
function.

In equilibrium under FIFO either every agent chooses to arrive at time 0, or some
fraction of the agents arrive at time 0 followed by a period (from 0 to t∗ ) where the den-
sity function disappears (no arrivals) and finally a period where agents arrive smoothly
until time 1/k where R(t) = 1, see Figure 3.

Figure 3 shows an example of an equilibrium arrival distribution function under
FIFO. Note that for an agent arriving at time s > t∗, the waiting time is given by the
horizontal distance between the R(t) curve and the ‘kt’ line that shows the cumulative
number of agents that has been serviced up until time t. The figure therefore also
illustrates how the waiting time decreases with t (from t∗ ) until it reaches zero at 1

k .
Next, we address the question of whether FIFO supports a unique CAD function.

Lemma 5. Under the FIFO queue discipline there is at most one equilibrium.

Proof. We prove this by way of contradiction. Let R(t) and S(t) be two distinct cumu-
lative arrival distributions supported by FIFO, and assume that S(0) < R(0) ≤ 1. From
Lemma 3 and no capacity waste, the equilibrium utility of an agent arriving at time 0
is at least w( 1k ) if R(0) = 1 and exactly w( 1k ) if R(0) < 1. However, since S(0) < R(0),
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R(t)

t

1

1/kt∗

Figure 3: Equilibrium under FIFO

the expected utility of an agent arriving at 0 is greater for S(t) than for R(t), a contra-
diction. Therefore, we must have R(0) = S(0). Then, given that R(0) = S(0), it readily
follows that t∗ is the same for the two arrival profiles. Further, we know that in both
cases the expected utility of every player arriving from t∗ and onwards equals w( 1k ), and
therefore, it must be that R(t) = S(t) for all t. Otherwise two players arriving at time s
between t∗ and 1

k would experience different waiting times, and hence, different expected
utilities.

Having established that FIFO always supports a unique equilibrium CAD, we move
on to state the following negative result regarding the welfare properties of the FIFO
queue discipline.

Proposition 1. Within the family of queue disciplines with no capacity waste, FIFO
minimizes welfare.

Proof. There are two cases: (a) all agent arrive at time 0, and (b) some fraction of the
agents arrive at time 0 followed by a period where no-body arrives and then a period
where agents arrive smoothly until time 1/k where the last agent arrives.

In case (a) total waiting time is the highest possible among queue disciplines with
no capacity waste. Thus, no other queue-discipline can do worse, and FIFO therefore
minimizes welfare among queue disciplines with no capacity waste.

In case (b), since r = 1/k, equilibrium utility is equal to w(1/k). Under every queue
discipline with no capacity waste, all players are serviced by 1/k. Thus, a player can
always choose to arrive at t = 1/k and obtain utility w(1/k). If, for some queue discipline
r < 1/k, then this implies that equilibrium utility is at least w(1/k), since otherwise
a player arriving at r could increase expected utility by postponing arrival to t = 1/k.
Thus, for no queue discipline can equilibrium utility be strictly lower than w(1/k), and

8



FIFO therefore minimizes equilibrium utility among queue disciplines with no capacity
waste.

3.3 Last-in-first-out (LIFO) queue discipline

Intuitively speaking, the problem with the FIFO discipline is that the strict queue dis-
cipline gives the agents an incentive to join the queue early which in the end will hurt
all agents in equilibrium. In the following, we will show that the last-in-first-out (LIFO)
queue discipline is not only better than the LIFO discipline, it is in fact welfare opti-
mal among all queue disciplines that do not waste capacity. In our setting, the LIFO
queue discipline works as follows. It always gives highest priority to those agents that
has arrived latest: When agents arrive continuously at a slower rate than capacity, they
are all served immediately. If they arrive continuously at a higher rate than capacity, a
fraction of agents are served immediately corresponding to capacity, while the rest must
wait to be served until those arriving later have all been served.2

Before we turn to investigate equilibrium utility under LIFO, we provide some pre-
liminary observations on equilibrium CADs and prove uniqueness and existence of an
equilibrium under LIFO.

Lemma 6. Let R be an equilibrium cumulative arrival distribution under LIFO, and let
r = min{t|R(t) = 1}. Then (a) R(0) = 0, (b) R is Lipschitz continuous on [0, r[, (c)
R′−(t) > k for all 0 < t < r, (d) r < 1/k.

Proof. (a) In equilibrium we cannot have R(0) > 0, since then there is a ε > 0 (suffi-
ciently small) such that an agent arriving at time 0 would be better off by arriving ε
later.

(b) First, observe that R is continuous on [0, 1/k], since if the CAD has a jump at
time t, there is some ε > 0 (sufficiently small) such that an agent arriving at time t would
be better off by arriving ε later. Let b be a fixed constant, where 0 < b < 1/k, and let
θ > 0 such that 0 < b − θ < b. We show that R is Lipschitz continuous on [0, b − θ].
For this, note that since R is continuous, R′−(s) exists for each s ∈]0, 1/k]. It is therefore
sufficient to show that R′−(s) is bounded. In (c) we show that R′−(t) > k for all 0 < t <
r, so here we focus on showing that R′−(s) is bounded from above, i.e., there is K > 0
such that R′−(s) < K for all s ∈ [0, b− θ]. For this, suppose on the contrary that there
is a sequence s1, s2, .. in [0, b− θ] such that R′−(s1) < R′−(s2) < ... and R′−(sh)→∞ for
h→∞. Since sh ≤ b− θ an agent arriving at sh which is not served immediately must
wait for a period of time of at least θ for being served at some time after r. Since the
probability of being served immediately goes to 0 as h→∞, the expected utility for an
agent arriving at time sh goes to a level below that of an agent arriving at time r (who
is being served immediately with certainty). This contradicts that R is an equilibrium.
Thus, R′−(s) is bounded from above on [0, b− θ] and the conclusion follows.

2Thus, in general an agent is facing a lottery over serving times with two possible outcomes, either
being served immediately at arrival or later, when everyone that arrive later have been served.
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(c) If R′−(t) ≤ k for some 0 < t < r, it means that an agent arriving at time t
is served immediately with certainty and thus obtains higher expected utility than an
agent arriving at time r. This contradict that R is an equilibrium CAD.

(d) Since R is Lipschitz continuous (and hence absolutely continuous) we have R(t) =∫ t
0 R
′
−(s)ds. By (c), the desired conclusion follows.

Uniqueness and existence of an equilibrium is established in the following lemmas.

Lemma 7. Under the LIFO queue discipline, there is at most one equilibrium.

Proof. Suppose, by contradiction, that R and S are equilibrium cumulative arrival rates,
R 6= S.

Let r = min{t|R(t) = 1} and s = min{t|S(t) = 1}. We consider two cases:
(i) r < s
(ii) r = s.
(The case r > s is symmetric to (i) and thus omitted).

Ad. (i): Since the agents arriving at times r and s are served immediately in the
two distributions respectively, the expected utility for agents in R is greater than for the
agents in S.

Let q = max{t|R(t) = S(t), t < s}. Since R(r) = 1 > S(r), and S and R are
continuous functions, q is well defined. Moreover, we have R′−(q) > S′−(q), contradicting
that expected utility is higher at R, since the agents not served at time q will be served
at the same later time for both R and S and the probability of being served at time q is
lower in R than in S.

Ad. (ii): Since the agents arriving at time r(= s) are served immediately, the
expected utility for agents arriving at time r(= s) is the same for both arrives profiles,
and thus expected utility in equilibrium is the same for both profiles. Since R 6= S,
R(0) = S(0) and R(r) = S(s) there is some t such that (a) R(t) > S(t) and R′−(t) <
S′−(t) or (b) S(t) > R(t) and S′−(t) < R′−(t). If (a) then an agent arriving at t is served
with higher probability at R compared to S, and if not served when arriving at t then
at R the agent will be served earlier than at S since less people will arrive after. This
contradicts that R and S provide the same ex ante utility.

Lemma 8. There exists a cumulative arrival distribution that is a Nash equilibrium
under LIFO.

Proof. Let b be a fixed constant, where 0 < b < 1/k. Let v denote the straight line going
through the points (b, 0) and (b, 1). Let l denote the straight line that goes through (b, 1)
with slope k.

Now, for each s ∈ [0, 1/k], we define a sequence of CAD functions Q1
b(s), Q

2
b(s),... as

follows.
For each s ∈ [0, b], let p1(s) be (uniquely) determined such that the expected utility

of an agent arriving at time s and being served immediately with probability p1(s) and
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otherwise served at time 1/k with probability 1−p1(s) is equal to the utility of an agent
arriving at time b and served immediately with certainty. Let r1(s) = k/p1(s). (Note
that if agents arrive with rate α(s) > k, the probability of being served immediately is
k/α(s)).

Since w(s) is continuous, r1(s) and p1(s) are continuous too. Note also that we have

r1(s) ≥ k. for all s. Define Q1
b(s) on [0, 1/k] such that Q1

b(s) =

σb(1)∫
0

r1(t)dt on [0, σb(1)]

where σb(1) is defined as the first point s where the graph of

s∫
0

r1(t)dt hits the line

l, then Q1
b(s) is identified with the line l up to the point b, and Q1

b(s) = 1 for s ≥ b.
By the Fundamental Theorem of Calculus Q1

b(s) is differentiable (and hence Lipschitz
continuous) on ]0, σb(1)[.

Now, we define Qhb (s) recursively as follows.
Suppose that a CAD Qh−1b (s) and a point σb(h − 1) has been defined such that

0 < σb(h − 1) ≤ b, Qh−1b (s) is differentiable on 0 ≤ s < σb(h − 1) and the derivative

on this domain is greater than or equal to k, Qh−1b (s) is identified with the line l for

σb(h− 1) ≤ s ≤ b, and Qh−1b (s) = 1 for s ≥ b. For each s ∈ [0, b], let βh−1(s) denote the

point in time where the straight line from (s,Qh−1b (s)) with slope k meets the horisontal
line connecting (0, 1) and (1/k, 1). Now, let ph(s) be (uniquely) determined such that
the expected utility of an agent arriving at time s and being served immediately with
probability ph(s) and otherwise served at time βh−1(s) with probability 1−ph(s) is equal
to the utility of an agent arriving at time b and served immediately with certainty. Let

rh(s) = k/ph(s). Define Qhb (s) such that Qhb (s) =

σb(h)∫
0

rh(t)dt, where σb(h) is the first

point s where the graph of

s∫
0

rh(t)dt hits the line l, and then Qhb (s) is identified with

the line l up to the point b, and Qhb (s) = 1 for s ≥ b. Since w(s) is continuous and
Qh−1b (s) is continuous on [0, b[, rh(s) and ph(s) are continuous on [0, b]. Note that Qhb (s)
is non-decreasing and by the Fundamental Theorem of Calculus it is differentiable (and
hence Lipschitz continuous) on ]0, σb(h)[.

Moreover, it follows from the recursive construction that σb(1) ≥ σb(2) ≥ ..., Q1
b(s) ≤

Q2
b(s) ≤ ... for all s ∈ [0, 1/k], and r1(s) ≤ r2(s) ≤ ... for all s ∈ [0, b].

We have limh→∞ σb(h) > 0, since if limh→∞ σb(h) = 0 the highest derivative of
Qhb (s) on [0, σb(h)] would go to infinity as h→∞ implying that the expected utility as
calculated above of a h-sequence of agents [0, σb(h)] would go to zero, contradicting the
construction of the sequence Q1

b(s), Q
2
b(s), ...

Also, for each 0 ≤ s ≤ limh→∞ σb(h), limh→∞ r
h(s) is finite, since if limh→∞ r

h(s) =
∞ it implies that the expected utility for agents arriving at s as calculated above goes
to zero, a contradiction.
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In the following, let Qb(s) = limh→∞Q
h
b (s) and σb = limh→∞ σ

h
b (s)

We now make the following observations:
(i) For b sufficiently close to 1/k, σb < b. This follows from observing that Qhb (s) is

increasing in b.
(ii) For b sufficiently close to 0, σb = b. This follows (again) from observing that

Qhb (s) is increasing in b (since it means it decreases when b goes to zero).
(iii) σb is continuous in b. This follows since w(s) is continuous and by the construc-

tion of σb and Qb.

Combining (i),(ii) and (iii), we get that there exists b such that σb = b and Qb(s)
is continuous on [0, 1/k]. By construction, with the CAD Qb(s) the expected utility for
an agent arriving at any time s with ≤ s < b is equal to the utility of an agent arriving
at b (who is served immediately with certainty) and thus Qb(s) is an equilibrium CAD
under LIFO.

Having established existence and uniqueness of LIFO, we now move on to establish
the welfare properties.

Lemma 9. Let R(t) be an equilibrium arrival distribution under LIFO, and let S(t) be
an equilibrium under some other queue discipline that gives higher welfare. Then s < r,
where s = min{t|S(t) = 1}, and r = min{t|R(t) = 1}, i.e., the latest arriving agent
according to S(t) arrives earlier than the latest arriving agent according to R(t).

Proof. An agent arriving at r under LIFO is served immediately. Thus, since equilibrium
utility is lower under the LIFO discipline - the agent arriving at s under the alternative
discipline must be served (and hence must have arrived) earlier than r, as illustrated in
Figure 4

t

R(t) (LIFO)

S(t)
1

1/k

Figure 4: LIFO and possible eq. under other discipline giving higher welfare

12



Lemma 10. Let R(t) be an equilibrium CAD under LIFO, and let S(t) be an equilibrium
under some other queue discipline, where let S(t) = R(t) for some t < 1/k and S(t) ≥
R(t) for all t ≤ t ≤ 1/k with strict inequality for some interval of time. Then the
equilibrium utility (and welfare) is higher under LIFO .

Proof. Under LIFO, the agents arriving from t or later gets priority over those who
arrived earlier but has not yet been served. Thus, the equilibrium utility for this group
of agents must be at least as high as the equilibrium utility for the group of agents
arriving from t or later under the queue priority supporting distribution S(t).

t

S(t)

LIFO1

1/kt̄

Figure 5: Higher welfare at LIFO

It follows readily from lemmas 9 and 10 that no queue discipline supports an equi-
librium giving higher welfare, and we can therefore state the following proposition.

Proposition 2. LIFO maximizes welfare.

3.4 Welfare properties

Theorem 1. Within the family of queue disciplines with no capacity waste, FIFO gives
the lowest equilibrium utility while LIFO gives the highest equilibrium utility.

Proof. Follows immediately from propositions 1 and 2.
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