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The Bounded Core for Games with Precedence Constraints∗

Michel Grabisch† Peter Sudhölter‡
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Abstract

An element of the possibly unbounded core of a cooperative game with precedence constraints
belongs to its bounded core if any transfer to a player from any of her subordinates results in payoffs
outside the core. The bounded core is the union of all bounded faces of the core, it is nonempty if
the core is nonempty, and it is a continuous correspondence on games with coinciding precedence
constraints. If the precedence constraints generate a connected hierarchy, then the core is always
nonempty. It is shown that the bounded core is axiomatized similarly to the core for classical co-
operative games, namely by boundedness (BOUND), nonemptiness for zero-inessential two-person
games (ZIG), anonymity, covariance under strategic equivalence (COV), and certain variants of the
reduced game property (RGP), the converse reduced game property (CRGP), and the reconfirmation
property. The core is the maximum solution that satisfies a suitably weakened version of BOUND
together with the remaining axioms. For games with connected hierarchies, the bounded core is
axiomatized by BOUND, ZIG, COV, and some variants of RGP and CRGP, whereas the core is the
maximum solution that satisfies the weakened version of BOUND, COV, and the variants of RGP
and CRGP.

Keywords: TU game · Core · Restricted Cooperation

JEL Classification: C71

1 Introduction

In the classical theory of cooperative games one assumes that all players may cooperate, i.e., any coalition

may form. However, a more general model for cooperative games with or without transferable utilities (TU

or NTU) is necessary in order to describe situations in which cooperation is restricted. In this paper we

adopt the model of Faigle and Kern (1992) who assume that the set of players has a hierarchical structure

generated by some partial order relation. Only those coalitions may form (are feasible) that satisfy the

following condition: With any player all of her subordinates (i.e., the players preceding her according to

the partial order relation) must also be members of the coalition. If all players are incomparable, then

any coalition is feasible so that classical cooperative games may be seen as special cooperative games

with precedence constraints.
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michel.grabisch@univ-paris1.fr
‡Department of Business and Economics and COHERE, University of Southern Denmark, Campusvej 55, 5230 Odense

M, Denmark. E-mail: psu@sam.sdu.dk



The well-known fact that the core of a TU game with precedence constraints may be unbounded seems

counterintuitive and has created several attempts to define a meaningful subset of the core that is bounded

(see, e.g., Grabisch (2011)). The core of such a game is a convex polyhedral set that contains no lines,

but, in contrast to the core of a classical TU game, it may have unbounded faces. Thus, attempts have

been made to extract certain bounded faces of the core if the core itself is unbounded. In this paper,

rather than trying to select one or some of the bounded faces, we consider the union of all bounded faces

and call this union the “bounded core”. An element x of the core belongs to the bounded core if, for any

player, each of her subordinates is a member of some coalition effective for x that does not contain the

player. Thus, in this sense each player takes the maximum of her subordinates.

The bounded core, though not convex, has many properties in common with the core of classical games.

E.g., it is a connected, bounded, and closed set, and as a correspondence it is continuous. Faigle’s

(1989) generalization of the Bondareva-Shapley theorem may be used to show that the (bounded) core is

nonempty whenever the underlying partial order generates a connected hierarchy. The bounded core may

also be supported by its axiomatization by simple and intuitive axioms. Indeed, according to Hwang and

Sudhölter (2001) the core is axiomatized by boundedness (BOUND), nonemptiness for zero-inessential

two-person games (ZIG), anonymity, covariance under strategic equivalence (COV), the reduced game

property (RGP), the converse reduced game property (CRGP), and the reconfirmation property. Suitable

extensions and versions of the foregoing axioms characterize the bounded core if precedence constraints are

possible. Moreover, the existing robustness results may be extended and even the bounded core of NTU

games with precedence constraints may be characterized. If one restricts the attention to cooperative TU

games on connected hierarchies then the core is axiomatized by BOUND, ZIG, COV, and some variants

of RGP and CRGP. The unbounded core, though certainly less interesting, may be supported as the

maximum solution that satisfies a suitably weakened version of BOUND (requiring that the payoffs to

any feasible singleton are bounded from below) and (a subset of the) remaining axioms.

The paper is organized as follows. In Section 2 we recall basic definitions of a partially ordered set, of TU

games with precedence constraints, and of the core. Moreover, the bounded core is formally introduced

and an example is given that shows that the bounded core may be non-convex. In Section 3 we show that

the bounded core of game with a connected hierarchy is nonempty and that the bounded core on the set

of balanced games with coinciding precedence constraints is upper and lower hemicontinuous, whereas

the core correspondence is lower hemicontinuous, but may fail to be upper hemicontinuous. In Section

4 we present the aforementioned generalizations of the robust axiomatizations of the core for classical

TU and NTU games. Finally, in Section 5 we explicitly present the axiomatization of the bounded core

when hierarchies are supposed to be connected. This axiomatization is much simpler and, hence, more

appealing than in the general case. Also, we present examples that show that each of the employed

axioms is logically independent of the remaining axioms.
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2 Notation, Definitions, and Preliminaries

A partially ordered set (poset) is a pair (P,�) such that P is a nonempty finite set and � is a partial

order on P , i.e., a reflexive, antisymmetric, and transitive binary relation on P . As usual, we write x � y

for (x, y) ∈ � and use x ≺ y if x � y and x 6= y. If x ≺ y and there is no z ∈ N such that x ≺ z ≺ y

then y covers x, denoted by x ≺· y. A chain in (P,�) is a sequence (x0, . . . , xq) such that x0 ≺ · · · ≺ xq
where q is called the length of the chain. The height of a poset is the length of its longest chain.

Let U be a set, the universe of players, containing, without loss of generality, 1, . . . , k whenever |U | > k.

A coalition is a finite nonempty subset of U . Let N be a coalition and (N,�) be a poset. Then S ⊆ N is

a downset of (N,�) if i ∈ S and j � i implies j ∈ S. Denote by F� the set of downsets of (N,�). Note

that (F�,⊆) is a distributive lattice of height1 |N |. By Birkhoff’s representation theorem the opposite

statement is also true: If F ⊆ 2N and (F ,⊆) is a distributive lattice of height |N |, then there exists a

poset (N,�) such that F = F�.

A (cooperative TU) game with precedence constraints (see Faigle and Kern (1992)) is a triple (N,�, v)

such that N is a coalition, (N,�) is a poset, and v : F� → R, v(∅) = 0. Note that a classical TU game

is a pair (N, v) such that v : 2N → R, v(∅) = 0. Hence, we may identify a game (N, v) with (N,�, v)

where (N,�) is the poset of height 0.

Let Γ denote the set of games with precedence constraints and (N,�, v) ∈ Γ. Let

X∗(N,�, v) = {x ∈ RN | x(N) 6 v(N)} and X(N,�, v) = {x ∈ RN | x(N) = v(N)}

denote the set of feasible and Pareto efficient feasible payoffs (preimputations), respectively. We use

x(S) =
∑
i∈S xi (x(∅) = 0) for every S ∈ 2N and every x ∈ RN as a convention. Additionally, xS denotes

the restriction of x to S, i.e. xS = (xi)i∈S , and we write x = (xS , xN\S).

The core of (N,�, v), denoted by C(N,�, v), is defined by

C(N,�, v) = {x ∈ RN | x(N) = v(N) and x(S) > v(S) for all S ∈ F�}. (2.1)

By its definition, the core of (N,�, v) is a convex polyhedral set. It is well known (see Derks and Gilles

(1995)) that it does not contain lines. More precisely,

C(N,�, v) = conv(ext(C(N,�, v)) + C(N,�, 0), (2.2)

where “conv” means “convex hull”, “ext” means “set of extreme points”, and “+” denotes “Minkowski

sum”. For any S ⊆ N, let NχS = χS ∈ RN be the indicator function of S, i,e. χSi = 1 for i ∈ S and χSj = 0

for j ∈ N \ S. If (N,�, v) is a classical game, i.e., if the height of (N,�) is 0, then C(N,�, 0) = {0}.

Otherwise, i.e., if there exists a pair (i, j) ∈ N such that i ≺ j, then (see Derks and Gilles (1995))

C(N,�, 0) = cone({χ{i} − χ{j} | i, j ∈ N, i ≺ j}), (2.3)

1A poset (P,�) is a lattice if for any x, y ∈ P their supremum, denoted x ∧ y, and infimum, denoted x ∨ y, exist. A
lattice is distributive if ∧ and ∨ satisfy distributivity.
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where “cone” denotes “convex cone generated by”. For i ≺ j, say i = i0 ≺· · · · ≺· ik = j,

χ{i} − χ{j} =

k−1∑
`=0

χ{i`} − χ{i`+1}

so that

C(N,�, 0) = cone({χ{i} − χ{j} | i, j ∈ N, i ≺· j}) (2.4)

(also shown by Tomizawa (1983), see also Fujishige (2005, Th. 3.26)). We are now ready to define the

bounded core.

Definition 2.1 Let (N,�, v) ∈ Γ. The bounded core of (N,�, v), denoted by Cb(N,�, v), is the set of

all elements x ∈ C(N,�, v) that satisfy the following condition for any i, j ∈ N with i ≺· j: There is no

ε > 0 such that x+ ε
(
χ{j} − χ{i}

)
∈ C(N,�, v).

Thus, an element of the core is in the bounded core, if no player j has an objection against any of the

players i she covers in the sense that as soon as some money is transferred from i to j this would result

in a preimputation that does not belong to the core. Interpreting the partial order � as a hierarchy, we

may say that i is an immediate (or direct) subordinate of j if i ≺· j. Then, the bounded core is the set

of core elements such that every player takes the maximum of her direct subordinates, in the sense that

any money transfer from a subordinate to her boss would result in a payoff vector outside the core.

The following result is an immediate consequence of (2.2) and (2.4).

Corollary 2.2 If (N,�, v) ∈ Γ, then

Cb(N,�, v) = {x ∈ C(N,�, v) | ({x} − C(N,�, 0)) ∩ C(N,�, v) = {x}}.

Therefore, if (N,�, v) is a classical game, the bounded core coincides with the classical core.

Remark 2.3 Let (N,�, v) ∈ Γ. According to Rockafellar (1970, Section 18) a closed convex set is the

disjoint union of the relative interiors of its faces. Hence, any element of Cb(N,�, v) is in the interior of

some face of C(N,�, v). We conclude that Cb(N,�, v) is the disjoint union of the relative interiors of

the bounded faces of C(N,�, v), i.e., Cb(N,�, v) is the union of all bounded faces of C(N,�, v). Thus,

the bounded core is connected.

The following example shows that the bounded core may be non-convex and, hence, a proper subset of

the convex hull of the extreme points of the core (called “convex part of the core”).

Example 2.4 Let N = {1, . . . , 4} and � be defined by i ≺· j iff i = 1 and j ∈ {2, 3}. Hence,

F = F� = {∅, {1}, {4}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, N}.

Let (N,�, v) be defined by v({1, 2}) = v({1, 3}) = 2, v(N) = 8, and v(S) = 0 for all other S ∈ F . With

x = (0, 4, 4, 0) and y = (2, 0, 0, 6), both x and y are elements of Cb(N,� v), but x+y
2 = (1, 2, 2, 3) ∈

C(N, v,�) \ Cb(N, v,�).
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3 Properties of the core

Let N ⊆ U be a finite nonempty set. We recall Lemma 6.7 of Maschler, Peleg, and Shapley (1972)

saying that a balanced collection of subsets is separating. A collection B ⊆ 2N is balanced (over N) if

positive real numbers δS , S ∈ B, exist such that
∑
S∈B δSχ

S = χN . The collection (δS)S∈B is a system

of balancing weights. Note that for any balanced collection B with system (δS)S∈B of balancing weights,

for k, ` ∈ N ,

1 =
∑
{δS | S ∈ B, k ∈ S} =

∑
{δS | S ∈ B, ` /∈ S 3 k}+

∑
{δS | S ∈ B, k, ` ∈ S} and

1 =
∑
{δT | T ∈ B, ` ∈ T} =

∑
{δT | T ∈ B, k /∈ T 3 `}+

∑
{δT | T ∈ B, k, ` ∈ T}.

Thus, any balanced collection B is separating in the sense that the following condition is satisfied for all

k, ` ∈ N : If there exists S ∈ B with ` /∈ S 3 k, then there exists T ∈ B with k /∈ T 3 `.

A balanced collection B is minimal balanced if it does not contain a proper balanced subcollection. Note

that a balanced collection is minimal balanced if and only if it has a unique system of balancing weights.

Now, we are ready to formulate the well-known generalization of the sharp form of the Bondareva-Shapley

theorem.

Theorem 3.1 (Faigle (1989)) Let (N,�, v) ∈ Γ. A necessary and sufficient condition that the core of

(N,�, v) is not empty is that for each minimal balanced collection B ∈ F with B 6= {N},

v(N) >
∑
S∈B

δSv(S),

where (δS)S∈B is the system of balancing weights for B.

Let (N,�) be a poset and i, j ∈ S ⊆ N . We say that i and j are connected in (S,�) if there is a path in

S that connects i and j, that is, if there exist k ∈ N and i1, . . . , ik ∈ N such that i = i1, j = ik, and, for

each ` = 1, . . . , k− 1, either i` ≺ i`+1 or i`+1 ≺ i`. Any ∅ 6= S ⊆ N may be partitioned into its connected

components, and S ⊆ N is connected if S = ∅ or S consists of a single component.

Lemma 3.2 Let (N,�) be a poset and N ⊆ U .

(1) If (N,�) is connected (i.e., N consists of a unique connected component), then C(N,�, v) 6= ∅ for

any v : F� → R, v(∅) = 0.

(2) If (N,�) is not connected, then there exists v : F� → R with v(∅) = 0 such that C(N,�, v) = ∅.

Proof:

(1) Let B ⊆ F� be a balanced collection and (δS)S∈B be a system of balancing weights. In view of

Theorem 3.1 it suffices to show that N is the unique nonempty element of B. Let R ∈ B, R 6= ∅.
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Then there exists i ∈ R. In order to show that R = N , let j 6= i. As (N,�) is connected, there exist

k ∈ N and i0, . . . , ik ∈ N such that i0 = i, ik = j, and i` ≺ i`+1 or i`+1 ≺ i` for all ` = 0, . . . , k − 1.

We show that i` ∈ R by induction on `. For ` = 0 nothing has to be proved. Assume that i` ∈ R

for some ` < k. If i`+1 ≺ i`, then i`+1 ∈ R because R ∈ F� is a downset. If i` ≺ i`+1, then there

exists Q ∈ B with i`+1 ∈ Q. As F� is the set of downsets, any S ∈ B with i`+1 ∈ S also contains

i`. As B is separating, i`+1 ∈ R.

(2) Let (N,�) be non connected and v be a mapping on F� with v(∅) = 0 that satisfies

v(N) <
∑
{v(S) | S is a connected component of (N,�)}.

Clearly, C(N,�, v) = ∅. q.e.d.

For the rest of this section we fix a poset (N,�), N ⊆ U , and identify a TU game (N,�, v) simply

by its coalition function v : F → R, where F = F�. Denote by Γ� the set of these games and let

Γ�b = {v ∈ Γ� | C(v) 6= ∅} (those games that are balanced). Moreover, let ΓN and ΓNb be the set of

classical and of classical balanced TU games with player sets N , respectively. We recall that for any

v ∈ ΓN , C(v) = Cb(v).

Let v ∈ Γ�. For any i ∈ N , let

bi(N,�, v) = bi(v) = min{v(S ∪ {i})− v(S) | S, S ∪ {i} ∈ F�, i /∈ S}. (3.5)

That is, bi(v) is i’s minimal marginal contribution.

Lemma 3.3 Let v ∈ Γ� and w ∈ ΓN such that w(S) = v(S) for all S ∈ F . Then (i) C(w) ⊆ C(v) and

(ii) if w(T ) 6
∑
i∈T bi(v) for all T ∈ 2N \ F , then Cb(v) ⊆ C(w).

Proof: The first statement is obviously true. In order to show the second inclusion, let x ∈ Cb(v) and

i ∈ N . If i is a minimal element, then xi > v({i}) > bi(v). Otherwise there exists j ∈ N such that j ≺· i.

As x + ε(χ{i} − χ{j}) /∈ C(v) for any ε > 0, there exists S ∈ F such that i /∈ S 3 j and v(S) = x(S).

Hence, 0 > v(S ∪ {i})− x(S ∪ {i}) = v(S ∪ {i})− v(S)− xi so that xi > v(S ∪ {i})− v(S) > bi(v). We

conclude x(S) >
∑
i∈S bi(v) for any S ∈ 2N . q.e.d.

We recall that a collection N ⊆ F is normal (with respect to (w.r.t.) (N,�)) if

CN (v) = {x ∈ RN | x(N) = v(N), x(S) > v(S) ∀S ∈ F , x(S) = v(S) ∀S ∈ N}

is bounded (see Grabisch (2011)).

Proposition 3.4 Let F = F� for some fixed (N,�). Then for any game v ∈ Γ�b

Cb(v) =
⋃
{CN (v) | N ⊆ F is a normal collection}.
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Proof: Take x ∈ Cb(v). As in the proof of Lemma 3.3, for any pair (i, j) with j ≺· i, there exists S ∈ F ,

i 6∈ S 3 j, such that x(S) = v(S). By Lemma 2 of Grabisch (2011), the collection of these S form a

normal collection N . Hence x ∈ CN (v).

Conversely, take a normal collection N and x ∈ CN (v). Then by Lemma 2 again, for any pair (i, j)

with j ≺· i, there exists S ∈ N , such that i 6∈ S 3 j, and x(S) = v(S). Hence for any ε > 0, taking

x′ = x+ ε(χi − χj), we would have x′(S) < v(S), proving that x ∈ Cb(v). q.e.d.

Note that if (N,�) has height 0 (i.e., (N,�) is a classical game), then the empty collection (N = ∅) is

normal, so that Proposition 3.4 recovers the fact that Cb(v) = C(v) for classical games.

Now, we consider the set-valued functions Cb : Γ�b ⇒ RN and C : Γ�b ⇒ RN . It is well-known (see, e.g.,

Peleg and Sudhölter (2007)) that C : ΓNb ⇒ RN is continuous, i.e., upper hemicontinuous (uhc) and lower

hemicontinuous (lhc).

Let S� = {(i, j) ∈ N ×N | i ≺· j}. For v ∈ Γ� and x ∈ C(v) define

d(x, v) = max
(i,j)∈S�

min{x(S)− v(S) | S ∈ F , j /∈ S 3 i}

and

β(x, v) = |{(i, j) ∈ S� | min{x(S)− v(S) | S ∈ F , j /∈ S 3 i} > 0}|.

Hence, if x ∈ C(v), then (i) d(x, v), β(x, v) > 0 and (ii) x ∈ Cb(v) iff d(x, v) = 0 iff β(x, v) = 0.

Lemma 3.5 Let v ∈ Γ�. If x ∈ C(v) such that β(x, v) > 0, then there exists y ∈ C(v) such that

d(y, v) 6 d(x, v), β(y, v) < β(x, v), and ||y − x||∞ 6 d(x, v).

Proof: Choose any (i, j) ∈ S� such that ε := min{x(S) − v(S) | S ∈ F , j /∈ S 3 i} > 0. Define

y = x+ ε(χ{j} − χ{i}). Then ε 6 d(x, v), β(y, v) 6 β(x, v)− 1, and ||y − x||∞ = ε. q.e.d.

Theorem 3.6 The set-valued function Cb : Γ�b ⇒ RN is continuous.

Proof: uhc: We first show that the graph of Cb, Gr(Cb) = {(v, x) ∈ Γ�b ×RN | x ∈ Cb(v)} is closed. For

this purpose, let vt ∈ Γ�b and xt ∈ Cb(vt) for t ∈ N so that limt→∞ vt = v and limt→∞ xt = x. Clearly,

x ∈ C(v). For any (i, j) ∈ S� let St(i,j) ∈ F such that j /∈ S 3 i and xt(S) = vt(S). As |F| is finite,

for any (i, j) ∈ S� there exists a collection S(i,j) ∈ F such that St(i,j) = S(i,j) for infinitely many t ∈ N.

Hence, x(S(i,j)) = v(S(i,j)) for all (i, j) ∈ S� and x ∈ Cb(v).

It suffices to show that Cb is a bounded set valued function, i.e., the image of a compact subset Γ′ of Γ�b

is bounded. Now, as Γ′ is compact, there exists t 6 0 such that t 6 bi(v) for all i ∈ N and v ∈ Γ′. Let Γ′′

be the set of all classical games w such that the restriction of w to F belongs to Γ′ and w(S) = |N |t for

all S ∈ 2N \ F . Then Γ′′ inherits compactness from Γ′. It is well-known (see Peleg and Sudhölter (2007,

Chapter 9)) that the core correspondence on classical balanced games is bounded. By (ii) of Lemma 3.3,

Cb is bounded.
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Moreover, a closed and bounded set-valued function is uhc.

lhc: Let v, vt ∈ Γ�b for t ∈ N such that limt→∞ vt = v, and let x ∈ Cb(v). It suffices to construct a

sequence xt ∈ Cb(vt) such that limt→∞ xt = x. Define classical games wt such that wt(S) = vt(S) for all

S ∈ F and wt(T ) =
∑
i∈T bi(v

t) for all T ∈ 2N \ T . Moreover, let w ∈ ΓN be defined by w(S) = v(S) for

all S ∈ F and w(T ) =
∑
i∈T bi(v) for all T ∈ 2N \T . Then limt→∞ wt = w and, by Lemma 3.3, x ∈ C(w).

As C is lhc on classical games, there exist yt ∈ C(wt) such that limt→∞ yt = x. By Lemma 3.3, yt ∈ C(vt).

By Lemma 3.5 and the triangle inequality there exist xt ∈ Cb(vt) such that ||xt − yt||∞ 6 |S≺|d(yt, v).

As limt→∞ vt = v and limt→∞ yt = x, limt→∞ d(yt, v) = d(x, v) = 0. Thus, limt→∞ xt = x. q.e.d.

The set-valued function C : Γ�b ⇒ RN inherits lhc from Cb. Indeed, if x ∈ C(v), then there exist

y ∈ Cb(v) and z ∈ C(0) such that x = y + z. Now, if limt→∞ vt = v, then by lhc of Cb there exist

yt ∈ Cb(vt), t ∈ N, such that limt→∞ yt = y. Moreover, xt := yt + z ∈ C(vt) and limt→∞ xt = x.

However, C is not bounded unless the height of (N,�) is 0. We now present an example that shows that

C may not be continuous (uhc) even in the case |N | = 2.

Example 3.7 Let N = {1, 2} and 1 ≺ 2. Let v and vt be defined by vt({1}) = v({1}) = v(N) = 0

and vt(N) = 1
t for all t ∈ N. Then limt→∞ vt = v, C(v) = {x ∈ R2 | x1 > 0, x2 = −x1}, and

C(vt) = {x ∈ R2 | x1 > 0, x2 = −x1 + 1
t }. Let U = {x ∈ R2 | x2 < −x1 + e−x1}. Then U is an

open set that contains C(v). However, for any t ∈ N there exist x1 > 0 such that 1
t > e−x1 so that

(x1,−x1 + 1
t ) ∈ C(vt) \ U. Therefore, C is not uhc.

4 Axiomatization of the bounded core

A solution on Γ′ ⊆ Γ is a mapping σ that associates with each (N,�, v) ∈ Γ′ a set σ(N,�, v) ⊆

X∗(N,�, v). Let σ be a solution on some Γ′ ⊆ Γ. Then the restriction of σ to any Γ′′ is a solution on Γ′′

so that we say that σ is a solution on Γ′′, too. If Γ′ is not specified, then we mean that σ is a solution on

Γ (and any of its subsets).

We now generalize some well-known properties of a solution on a set of classical games.

A solution σ on Γ′ ⊆ Γ satisfies:

(1) Pareto optimality (PO) if σ(N,�, v) ⊆ X(N,�, v) for all (N,�, v) ∈ Γ′.

(2) Covariance under strategic equivalence (COV) if, for all (N,�, v), (N,�, w) ∈ Γ′, α > 0, and β ∈

RN , the following condition is valid: If w(S) = αv(S) + β(S) for all S ∈ F�, then σ(N,�, w) =

ασ(N,�, v) + β.

(3) Anonymity (AN) if, for all (N,�, v) ∈ Γ′ and all injective mappings π : N → U the following

condition is valid: If (π(N),�′, πv) ∈ Γ′, where π(i) �′ π(j) iff i � j, (πv)(π(S)) = v(S) for all
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S ⊆ F�, and π(x) = y ∈ Rπ(N) is defined by yπ(i) = xi∀x ∈ RN ,∀i ∈ N , then σ(π(N),�′, πv) =

π(σ(N,�, v)).

(4) Boundedness (BOUND) if σ(N,�, v) is a bounded set for all (N,�, v) ∈ Γ′.

(5) The two-person zero-inessential game property (ZIG) if σ(N,�, 0) 6= ∅ for all (N,�, 0) ∈ Γ′ satis-

fying |N | = 2.

In order to generalize various reduced game properties, we first have to define the generalization of the

Davis-Maschler reduced game of a classical game. Let (N,�, v) ∈ G and ∅ 6= S ⊆ N . Let (S,�S) denote

the sub-poset of (N,�) on S, i.e., the intersection of � and S × S. Note that F�S = {T ∩ S | T ∈ F�}.

Remark 4.1 Let (N,�, v) ∈ Γ and ∅ 6= S ∈ F�. Then F�S = {T ∈ F� | T ⊆ S}. Hence, with

vS(T ) = v(T ) for all T ∈ F�, T ⊆ S, the game (S,�S , vS) is the subgame of (N,�, v) w.r.t. S. Slightly

abusing notation we use vS = v and �S=� in this case.

Let x ∈ RN . The reduced game of (N,�, v) w.r.t. S and x is the game (S,�S , v�S,x) defined by

v�S,x(T ) =


0 , if T = ∅,

v(N)− x(N \ S) , if T = S,

max{v(R)− x(R \ T ) | R ∈ F�, R ∩ S = T} , if T ∈ F�S \ {∅, S}.

The solution σ satisfies the

(6) reduced game property (RGP) if the following condition holds: If (N,�, v) ∈ Γ′, ∅ 6= S ⊆ N, and

x ∈ σ(N,�, v), then (S,�S , v�S,x) ∈ Γ′ and xS ∈ σ(S,�S , v�S,x);

(7) converse reduced game property (CRGP) if the following condition holds: If (N,�, v) ∈ Γ′, |N | >

2, x ∈ X(N,�, v), (S,�S , v�S,x) ∈ Γ′ and xS ∈ σ(S,�S , v�S,x) for all S ⊆ N with |S| = 2, then

x ∈ σ(N,�, v);

(8) reconfirmation property (RCP) if the following condition holds for every (N,�, v) ∈ Γ′, every x ∈

σ(N,�, v), and every ∅ 6= S ⊆ N : If (S,�S , v�S,x) ∈ Γ′ and yS ∈ σ(S,�S , v�S,x), then (yS , xN\S) ∈

σ(N,�, v).

Remark 4.2 On any set of classical games the core satisfies all of the foregoing eight axioms except

RGP, and it satisfies RGP if the class of classical games is closed under reduction w.r.t. core elements.

Similar proofs show the same results for the core on a set of games with precedence constraints, with one

exception, namely BOUND. However, BOUND is a crucial assumption in the axiomatization of the core

by Hwang and Sudhölter (2001).

Lemma 4.3 The bounded core satisfies AN, COV, BOUND and CRGP on any Γ′ ⊆ Γ, and it satisfies

RGP on any set Γ′ ⊆ Γ that is closed under reduction w.r.t. elements of the bounded core.
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Proof: Clearly, Cb inherits AN and COV from C. Let (N,�, v) ∈ Γ. By Proposition 3.4, BOUND is

proved. Let x ∈ C(N,�, v) and ∅ 6= S ⊆ N . Define u = v�S,x. By Remark 4.2, xS ∈ C(S,�S , u). If

xS /∈ Cb(S,�S , u), then there exist i, j ∈ S and ε > 0 such that i ≺S ·j and yS := xS + ε(Sχ{j}− Sχ{i}) ∈

C(S,�S , u). By Remark 4.2, the core satisfies RCP so that (yS , xN\S) = x + ε
(
Nχ{j} − Nχ{i}

)
belongs

to C(N,�, v), so that x /∈ Cb(N,�, v). Hence, the bounded core satisfies RGP provided that the reduced

games w.r.t. bounded core elements belong to the set of games under consideration. In order to show

CRGP, assume that |N | > 2 and that x ∈ X(N,�, v) and xS ∈ C(S,�S , v�S,x) for all S ⊆ N with |S| = 2.

By Remark 4.2, x ∈ C(N,�, v). If x /∈ Cb(N,�, v), then there exist i, j ∈ N and ε > 0 such that i ≺· j

and y := x + ε(χ{j} − χ{i}) ∈ C(N,�, v). With S = {i, j}, yS ∈ C(S,�S , v�S,y) by Remark 4.2. As

v�S,y = v�S,x and yS = xS + ε(Sχ{j} − Sχ{i}), xS /∈ Cb(S,�S , v�S,x) so that CRGP follows. q.e.d.

The following example shows that the bounded core may not satisfy RCP.

Example 2.4 cont. Let S = {1, 4}, �′=�S , and u = v�S,y. Then u({1}) = 2, u({4}) = 0, and u(S) = 8 so

that with z1 = 8 and z4 = 0, z ∈ C(S, u) = C(S,�′, u) = Cb(S,�′, u). However, (z, yN\S) = (8, 0, 0, 0) ∈

C(N,�, v) \ Cb(N,�, v).

Hence, we use a weaker property than RCP. Let (N,�) be a poset and i, j ∈ N . We say that a solution

σ on Γ′ ⊆ Γ satisfies the reconfirmation property w.r.t. classical games RCPcg if it satisfies (8) for all

classical games (N,�, v) ∈ Γ′ (i.e., the height of (N,�) is 0). Hence, on sets of classical TU games, RCP

and RCPcg cannot be distinguished.

Note that the bounded core coincides with the core on any set of classical games so that it satisfies RCPcg

on any set of games with precedence constraints.

Till the end of this section we assume that |U | > 5.

Theorem 4.4 The bounded core is the unique solution on Γ that satisfies ZIG, AN, COV, RGP, RCPcg,

CRGP, and BOUND.

Proof: By definition of the bounded core, 0 ∈ Cb(N,�, 0) for any flat game (N,�, 0) ∈ Γ. Hence, Cb

satisfies ZIG. By Lemma 4.3, the bounded core satisfies the remaining axioms as well. In order to show

the uniqueness part, let σ be a solution that satisfies the seven foregoing axioms. Hwang and Sudhölter

(2001, Theorem 4.1) show that σ coincides with the core on the set of classical games provided |U | > 5.

Hence, by CRGP and RGP, it suffices to show that σ coincides with the bounded core for any two-person

game that is not a classical game. Indeed, assume that this property holds. Take x ∈ σ(N,�, v). By

RGP of σ, for any S ⊆ N , |S| = 2, xS ∈ σ(S,�S , u) = Cb(S,�S , u), where u is the reduced game. Then

by CRGP of Cb, x ∈ Cb(N,�, v). The converse is obtained by permuting σ and Cb. Let (N,�, v) ∈ Γ

with N = {i, j} and i ≺ j. By COV we may assume that v({i}) = v(N) = 0. By ZIG there exists

x ∈ σ(N,�, v). By COV, αx ∈ σ(N,�, αv) for any α > 0. As αv = v = 0, x = 0 by BOUND. Hence,

σ(N,�, v) = Cb(N,�, v). q.e.d.
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In order to characterize the core, we basically replace BOUND by individual rationality: A solution σ in

a set Γ′ ⊆ Γ is

(9) individually rational (IR) if, for any (N,�, v) ∈ Γ′, x ∈ σ(N,�, v), and i ∈ N , the following

property holds: If {i} ∈ F�, then xi > v({i};

(4’) bounded w.r.t. singletons (BOUNDs) if for any (N,�, v) ∈ Γ′, the restriction of σ(N,�, v) to the

set {i ∈ N | {i} ∈ F�} is bounded from below2.

Clearly IR implies BOUNDs.

Moreover, for classical TU games, BOUND and BOUNDs are equivalent. Let σ and σ′ be solutions on

Γ′ ⊆ Γ. We say that σ′ is a subsolution of σ if σ′(N,�, v) ⊆ σ(N,�, v) for all (N,�, v) ∈ Γ′.

Lemma 4.5 Any solution σ that satisfies ZIG, AN, COV, RGP, RCPcg, CRGP, and BOUNDs is a

subsolution of the core.

Proof: Again by Theorem 4.1 of Hwang and Sudhölter (2001), σ coincides with the core for any classical

game. By RGP and CRGP (proceeding similarly as in the corresponding part of the proof of Theorem 4.4),

it suffices to show that σ(N,�, v) ⊆ C(N,�, v) for any two-person game (N,�, v) that is not a classical

game. Let N = {i, j}, i ≺ j, and x ∈ σ(N,�, v). By COV, we may assume that v({i}) = v(N) = 0,

hence αv = v for any α > 0. We conclude αx ∈ σ(N,�, v) so that xi > 0 by BOUNDs. Now, consider

S = {i}, denoting the reduced game by u. By RGP, xi ∈ σ({i},�{i}, u). Since the reduced game is a

classical game, xi = u({i}) = v({i, j})− xj = −xj . Therefore, x ∈ C(N,�, v). q.e.d.

Corollary 4.6 The core is the maximum solution that satisfies ZIG, AN, COV, RGP, RCPcg, CRGP,

and BOUNDs.

Several other characterizations of Hwang and Sudhölter (2001) may be generalized to games with prece-

dence constraints as well. Indeed, Γb denote the set of balanced games in Γ. Moreover, let Γtb denote

the set of totally balanced games in Γ. A game (N,�, v) ∈ Γ is totally balanced if, for any ∅ 6= S ∈ F�,

the subgame (S,�, v) (see Remark 4.1) is balanced.

Note that a reduced game of a game in Γtb w.r.t. a core element may not be balanced. Therefore, we

shall employ the weak reduced game property defined as follows. A solution on Γ′ ⊆ Γ satisfies the

(6’) weak reduced game property (WRGP) if the following condition holds: If (N,�, v) ∈ Γ′, ∅ 6= S ⊆

N, |S| 6 2, and x ∈ σ(N,�, v), then (S,�S , v�S,x) ∈ Γ′ and xS ∈ σ(S,�S , v�S,x).

Theorem 5.1 of Hwang and Sudhölter (2001) may be generalized as follows.

2I.e., there exists β ∈ R such that xi > β for any i ∈ N such that {i} ∈ F and any x ∈ σ(N,�, v).
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Proposition 4.7 Let Γtb ⊆ Γ′ ⊆ Γ such that Γ′ does not contain non-balanced two-person games. Then

the bounded core on Γ′ is the unique solution that satisfies ZIG, COV, WRGP, RCPcg, CRGP, and

BOUND.

It should be noted that the results on the core of NTU games (see Section 7 of the aforementioned

paper) may be generalized to NTU games with precedence constraints in a canonical way. Moreover,

examples are presented that show that each axiom employed in the various characterizations is logically

independent of the remaining axioms. Suitable modifications of these examples may be used to show the

logical independence of the axioms employed in Theorem 4.4 and Proposition 4.7. Finally it should be

remarked that the assumption |U | > 5 is already crucial for the results on classical games.

5 The bounded core for games with connected hierarchies

We say that (N,�, v) ∈ Γ has a connected hierarchy if (N,�) is connected. Let Γch denote the set of all

TU games (N,�, v) that have connected hierarchies. This section is devoted to an axiomatization of the

bounded core for games with connected hierarchies.

In order to characterize the core on Γch, the following variant of the reduced game property is useful. A

solution σ on Γ′ ⊆ Γ satisfies

(6cc) reduced game property w.r.t. connected coalitions (RGPcc) if the following condition holds: If

(N,�, v) ∈ Γ′, ∅ 6= S connected w.r.t. (N,�), and x ∈ σ(N,�, v), then (S,�S , v�S,x) ∈ Γ′ and

xS ∈ σ(S,�S , v�S,x);

(6’cc) weak reduced game property w.r.t. connected coalitions (WRGPcc) if the following condition holds:

If (N,�, v) ∈ Γ′, ∅ 6= S connected w.r.t. (N,�), |S| 6 2, and x ∈ σ(N,�, v), then (S,�S , v�S,x) ∈ Γ′

and xS ∈ σ(S,�S , v�S,x);

(7’) converse reduced game property w.r.t. connected coalitions (CRGPcc) if the following condition

holds: If (N,�, v) ∈ Γ′, |N | > 2, x ∈ X(N,�, v), (S,�S , v�S ) ∈ Γ′ and xS ∈ σ(S,�S , v�S ) for all

connected S ⊆ N with |S| = 2, then x ∈ σ(N,�, v);

(5’) nonemptiness (NEM) if σ(N,�, v) 6= ∅ for all (N,�, v) ∈ Γ′.

Lemma 5.1 On Γch the bounded core satisfies RGPcc, CRGPcc, and NEM.

Proof: Let (N,�, v) ∈ Γch. In order to show RGPcc, let ∅ 6= S be a connected coalition, and x ∈

Cb(N,�, v). Then S remains connected w.r.t. (S,�S) so that, as Cb satisfies RGP, xS ∈ Cb(S,�S , v�S,x).

In order to show CRGPcc, assume that |N | > 2 and x ∈ X(N,�, v) \ Cb(N,�, v). If x /∈ C(N,�, v),

there exists T ∈ F� such that v(T ) > x(T ). As ∅ 6= T 6= N and N are connected, there exist i ∈ T and

j ∈ N \ T such that i ≺· j so that S = {i, j} is connected. Let u = v�S,x. We have (S,�S , u) ∈ Γch.
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Moreover, xS /∈ C(S,�S , u), therefore xS 6∈ Cb(S,�S , u). Indeed, u({i}) > v(T ) − x(T \ i). Since

v(T ) > x(T ), this entails u({i}) > xi. If x ∈ C(N,�, v) \Cb(N,�, v), then, proceeding as in the proof of

Lemma 4.3, there exist k, ` ∈ N such that k ≺· ` and ε > 0 such that y := x+ε(χ`−χk) ∈ C(N,�, v). As

S = {k, `} is connected, (S,�S , v�S,x) ∈ Γch. As yS ∈ C(S,�S , v�S,x), xS /∈ Cb(S,�S , v�S,x). We conclude

that Cb satisfies CRGPcc.

NEM follows from Lemma 3.2 (1). q.e.d.

Remark 5.2 A careful inspection of the proof of Lemma 5.1 shows that the core on Γch satisfies RGPcc

and CRGPcc as well.

Theorem 5.3 The bounded core on Γch is the unique solution that satisfies ZIG, COV, WRGPcc,

CRGPcc, and BOUND.

Proof: By Lemma 4.3 and Lemma 5.1 the bounded core satisfies the desired axioms. In order to verify

uniqueness, let σ be a solution on Γch that satisfies ZIG, COV, WRGPcc, CRGPcc, and BOUND. By

Lemma 5.4, σ is a subsolution of the core. Let (N,�, v) ∈ Γch. If |N | 6 2, then ZIG, COV, and BOUND

imply that σ(N,�, v) = Cb(N,�, v) (see proof of Theorem 4.4). Now, let |N | > 2 and x ∈ σ(N,�, v).

As σ coincides with Cb for any 2-person game in Γch, PO of σ and CRGPcc of Cb imply x ∈ Cb(N,�, v).

Hence, σ(N,�, v) ⊆ Cb(N,�, v). The opposite inclusion is shown by interchanging the roles of σ and

Cb. q.e.d.

Note that the foregoing proof is similar to the proof of Peleg’s (1986) axiomatization of the prekernel.

Lemma 5.4 If σ is a solution on Γch that satisfies COV, WRGPcc, and BOUNDs, then σ is a subsolution

of the core.

Proof: Let (N,�, v) ∈ Γch. If |N | 6 2, the proof is finished by COV and BOUNDs. If |N | > 3, then

by WRGPcc applied to one-person reduced games (note that any singleton coalition is connected), any

element of σ(N,�, v) is Pareto optimal. Thus, σ satisfies PO. Let x ∈ σ(N,�, v). As the core satisfies

CRGPcc by Remark 5.2, x ∈ C(N,�, v). q.e.d.

Corollary 5.5 The core is the maximum solution on Γch that satisfies COV, WRGPcc, and BOUNDs.

In order to show that each of the five axioms in Theorem 5.3 is logically independent of the remaining

axioms, provided that |U | > 3, we define five solutions σi, i = 1, . . . , 5, so that σi exclusively violates the
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i-th axiom. For (N,�, v) ∈ Γch define

σ1(N,�, v) = ∅ (the “empty” solution), (5.6)

σ2(N,�, v) = {z}, where zi =
v(N)

|N |
for all i ∈ N (the “equal split” solution), (5.7)

σ3(N,�, v) = {x ∈ X(N,�, v) | xi > bi(N,�, v) for all i ∈ N} (the “reasonable below set”),(5.8)

σ4(N,�, v) = ext(C(N,�, v)), and (5.9)

σ5(N,�, v) = C(N,�, v). (5.10)

Clearly, σ1 and σ2 exclusively violate ZIG (if |U | > 1) and COV (if |U | > 2), respectively. By Remark

5.2 the core satisfies RGPcc and CRGPcc. Moreover, the bounded core is a subsolution of the core, and

the core is unbounded for any two-person game with a connected hierarchy. Thus, σ5 exclusively violates

BOUND (if |U | > 2).

Example 5.6 below shows that neither σ3 nor σ4 coincides with the bounded core provided that |U | > 3.

The bounded core of a game with a connected hierarchy and two persons coincides with the unique

extreme point of the core of the game. Hence σ3 and σ4 coincide with the bounded core for all games

in Γch with at most two players. In general the bounded core is a subsolution of σ3 by Lemma 3.3

and a supersolution of σ4 by definition. Clearly, σ3 and σ4 satisfy COV so that they exclusively violate

WRGPcc and CRGPcc (if |U | > 3), respectively.

Example 5.6 Let (N,�, v) be defined by N = {1, 2, 3}, 1, 2 ≺ 3, and v({1, 2}) = v(N) = 1, v(S) = 0

for all S ∈ {∅, {1}, {2}}. Then b1(v) = b2(v) = b3(v) = 0 so that (0, 0, 1) ∈ σ3(N,�, v) \ C(N,�, v).

Moreover,
(
1
2 ,

1
2 , 0
)
∈ Cb(N,�, v) \ ext(C(N,�, v)) because (1, 0, 0), (0, 1, 0) ∈ C(N,�, v).
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