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Abstract 

This paper uses bio-economic modeling and simulation to investigate the de-
mise of the sperm whale industry in the mid-19th century. Petroleum is widely 
credited both contemporaneously and today with ‘saving the whales.’ We in-
vestigate the transition in illumination technologies from whale oil to petroleum 
as a stochastic dynamic process in which there is uncertainty over the parame-
ters of the fishery and the timing of available substitutes for sperm oil in order 
to determine the effect on the whale population. Using new biological analysis 
of the sperm whale fishery (Whitehead, 2002) and insights from natural re-
source economics we show that under most economic conditions the dynamics, 
even without a substitute, would have prevented extinction; this result is nota-
bly different, for economic and biological reasons, than that usually determined 
for the better studied baleen whales. This research builds on a long history of 
understanding the whale fisheries, particularly Davis et al. (1988) and related 
work, integrating new scientific and economic evidence. 
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I. Introduction 

In 1861, Vanity Fair published a cartoon where sperm whales hosted a ball in 
honor of the new petroleum discoveries thanking them for saving the species 
(Vanity fair, 1861). Conventional wisdom clearly credits the PA discoveries 
with a seismic shift in the illumination industry that brought the end of whaling 
and saved a species from extinction. 
 
Over the decades, this wisdom has been questioned by economic historians and 
others, and the literature to date on the intertwined fates of the American whal-
ing and petroleum industry has focused mainly on the extent to which the dis-
covery of readily accessible petroleum supplies caused the decline of the whal-
ing industry in the latter half of the 19th century (Daum, 1957; Hutchins, 1988; 
Maran, 1974; Shuster, 1971). In these works, the questions investigate the de-
mand and supply of whale oils in an industrial setting where the discovery of 
petroleum is virtually exogenous, though once discovered, it has a tremendous 
impact on whale oil markets. In this project, we seek to unify our understanding 
of the transition between the two industries by examining theoretically the ex-
tent to which the troubles in the whaling industry influenced the discovery of 
drillable petroleum in 1859 and the formation of the industry that sealed whal-
ing's fate. We discuss the two industries in terms of a transition from one ex-
haustible resource to another, we exploit natural resource economics theory to 
evaluate the historical evolution of the industries. Along the way, we are able to 
address other interesting questions about resource use, including how the whale 
population would have fared with different (uncertain) timing in the discovery 
of illumination substitutes. This latter question is the focus of the immediate 
paper. 
 
Here we consider whale oil a renewable but exhaustible resource, where the 
search for a backstop technology results in uncertainty about the availability 
(marginal cost) and timing of substitutes. These characteristics provide the basis 
for determining the theoretically optimal time profiles of the primary (sperm 
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whale oil) and backstop (e.g. petroleum) resource supply rates. These optimal 
time profiles will, in turn, be examined in light of the actual data in order to in-
form about the overall exploitation of the primary resource in terms of its ex-
haustibility, i.e. will provide theoretical corroboration or rejection of the empir-
ical findings of Davis, Gallman and Hutchins (1988) that the stock of sperm 
whales was not, in fact, in jeopardy in the 19th century. 
 
We begin with a brief overview of the illumination business. We use data from 
several different sources to inform our research. We have data on individual 
whaling voyages and biologists from which to build our cost (supply) function, 
and from industry accounts of prices and quantities of whale oil and petroleum 
traded to build our demand function. 
 
With respect to the whaling industry, we show, using standard theory of renew-
able but exhaustible resources, how sperm whale oil extraction should have op-
timally progressed if no alternative technologies were available (so that the pre-
sent value of marginal user costs were equal across time), and how they would 
have likely progressed given the estimated stocks of whales and the growing 
demand for illumination (and lubricants). Using Monte Carlo methods, we in-
vestigate uncertainties about the biological capacity of the fishery (both growth 
and carrying capacity) and our counterfactual assumption about the timing of a 
substitute illuminant like petroleum or electricity. While our model relies on op-
timal extraction decisions in all industries, we note that the open access nature 
of the fishery would exacerbate the resource pressures, but not change the un-
derlying structure of costs and bio-dynamic processes, and leave the details of 
this problem for future work. 
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II. History and Background 

A. Short History of Illumination, 1800-1859 
 
Illumination up until 1830 was generally restricted to tallow for the common 
man (Williamson and Daum, 1959). Sperm whales had been actively hunted 
since 1712, but the oil was expensive enough to be mainly for wealthy, and na-
val disruptions through the war of 1812 hampered the industry tremendously. 
The demand for luminants was growing rapidly with industrialization, however. 
Whale oil dominated the illumination market in the 1850 census (65.5% of the 
market in oil and gas illuminants (Daum, 1957)), but its competitors had de-
creased this share to 19% by 1860. Town gas (from coal), was introduced as a 
potential solution to the illumination problem for urban areas, arriving in Balti-
more first, in 1816, and then to New York and Boston by 1830, and had a 16% 
share of the market by 1850, which grew to 38% in 1860. (Daum,1957). 
 
Several more cities turned to town gas 1830-1837; the financial panic of 1837 
slowed this, then town gas expansion picked up again in the mid 1840s. A tariff 
reduction for coal into the US in 1846 from $1.75 to $0.40 per ton increased 
coal use, and there were 56 or so plants in operation in 1850 (Williamson and 
Daum, 1959). 
 
But town gas was expensive to network into homes, and so slow-going. House-
holds were still looking for alternatives. Meanwhile, lamps evolved to burn bet-
ter and give more light. Lamps also started to be able to take different types of 
oil (sometimes with a bit of conversion), reducing joint-product problems, in 
response to a number of potential new fuel entrants. Camphene (from turpen-
tine) was developed, but was highly flammable -- still it had 9% of the market 
in 1860. Lard oil markets expanded, with 13.5% of the market in 1850 (falling 
to 8% in 1860). Europeans were working to produce coal oils from the mid 
1830s, but not much was going on in the US with converting minerals to oil un-
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til 1850. With no measurable share of the illumination market in 1850, by 1860 
coal oil (kerosene) had 20% of the market (Daum, 1957). 
 
Coal-oil kerosene and lamps really dominated the growth in the mid- late 
1850s, replacing the dangerous but cheap (and therefore popular) camphene. 
This transformation put distilling and networks in place. Those working with 
distilled oils were aware of the theoretical potential of petroleum, but didn't 
know how to get enough of it. The innovation of drilling, borrowed from salt 
wells that had actually been producing petroleum as a by-product in the Mid-
Atlantic region, was needed to settle the question of which mineral or oil re-
source would capture the market at the lowest cost. In 1859, oil was struck at 
Pithole, PA, and quickly outcompeted other forms of illuminants. 
 
B. Demand for Illumination 
 
To model the demand for whales, we need to model the demand for illumina-
tion. We do so using an instrumental variables model estimating a growing in-

verse demand function for illumination from oils, 
1( )tD q

, where  t wt btq q q  , so 
that qt is the total quantity of luminants demanded at time t, qwt is the quantity 
of in thousand gallons of sperm oil, qbt is the quantity of the alternative (back-
stop) resource, here petroleum, in thousand gallons.   is a coefficient translat-
ing illuminating power, which we set here equal to approximately 0.64 based on 
reports of chemists suggesting that 1.57 gallons of petroleum oil (transformed 
to kerosene) were needed to produce the same illumination quality and hours as 
one gallon of sperm oil (Silliman, 1871). We assume that demand for all illu-
minating oils starts to fade rapidly in the 1880s with the advent of electricity. 
 
We determine empirically (Table 1) that the main components of demand for il-
lumination (captured in one dimension by adjusting petroleum extraction quan-
tities first to kerosene and then for light producing capabilities so that the units 
are in sperm oil equivalence) over the 19th century are captured by industrial 
progress, time, and price, and the price of the lesser substitute whale oil (as op-
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posed to sperm oil), which is included in Table 1, Col III. The index of industri-
al production (Table 1, Col I) is a more targeted measure of growth than per 
capita GDP (Table 1, Col II) and seems to capture more clearly the demand for 
illuminants. 
 
The regressions in Table 1 are estimated as 2SLS estimators to account for en-
dogeneity with supply, with error corrections for heteroskedasticity and auto-
correlation stemming from the time-series nature of the data.1 
 
Note that the advent of electricity in the late 19th Century provides a secondary 
backstop to illumination needs from either sperm oil or kerosene, and helps ex-
plain why the coefficient on year is positive while that on the index of industrial 
production is negative – the total effect of this is to show growth for demand in 
illumination oils until the 1880s and then this begins to fall. We feel that it is 
more than reasonable to assume that technological progress would continue in 
some form even if petroleum had not been discovered (indeed, census data 
shows sperm oil illumination was already decreasing in importance by 1860, 
due to town gas, coal oil kerosene, and camphene alternatives), so that our 
counterfactual is not simply that a failure to discover petroleum would mean 
that whale oils must supply all illumination needs. 
 

Thus we choose 
1 ·(q ) t

t tD e p         
 as our functional form, so that quantity is a 

function of price, pt and an industrial production index (Davis, 2004), I, grow-
ing over time as the North American economy expands, with a structural break 
possible at 1879, signaling the advent of electricity as a substitute form of illu-
mination (e.g. 1   from 1879 forward). While the coefficient on the price of (in-
ferior substitute) whale oil is statistically significant in our estimation, its main 
effect on the model for demand is to lower the own price elasticity, so we do 
                                                           

1 Both heteroskedasticity and autocorrelation are found in preliminary testing. Results not included. 
Heteroskedasticty corrected with standard robust estimators. Autocorrelation corrected with Newey 
and West’s (1994) automatic non-parametric bandwidth-selection procedure in Stata (asymptotically 
efficient for a given rule for weighting covariances [kernel]). 
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not allow the coefficient to vary for parsimony in further simulations, instead 
holding it constant at its mean and folding it into the constant, α. Instruments 
are the shipping tonnage in the whaling industry and the whale population, both 
of which should affect supply of oils but not demand. 
 
Using the results from Table 1, col III, the elasticity of demand, η, is estimated 
to be 3.06%. It may seem surprising that we would find such elastic demand, 
but anecdotal evidence for a high elasticity of demand for sperm oil comes from 
as early as the mid 1760s, when spermaceti candle manufacturers in New Eng-
land tried (rather unsuccessfully) to restrict entry and keep down oil prices 
through a monopsonistic cartel because oil input prices were rising faster than 
the market would allow candle output prices to grow. Between 1761and 1774, 
the premium on the highest quality oil had increased almost 7-fold while the 
price of candles had only increased about 20% in Boston (Dolin, 2007). Elastic-
ity of demand for petroleum was also fairly high in the early days of petroleum, 
with many substitutes, uncertain customers, and evolving methods for storage 
and distribution. 
 
The coefficient on the industrial production index is small and somewhat sur-
prisingly negative, at -0.004. In combination with the strong coefficient on time 
(0.2) and the post-1879 dummy (-1.7), this only begins to shift the demand 
curve back after about 1880, when electricity begins to come on the scene as an 
alternative for illumination. We exploit this tradeoff between overall growth, 
that should increase demand for illumination, and growth in industrial produc-
tion that might bring substitutes, in our demand, using these parameters as a 
second backstop to the importance of kerosene illumination. 
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Table 1: Instrumental Variables (2SLS) estimation for demand for 
illumination (dep. Var = log quantity illuminating oil, gallons. Ln 
Qt= Ln (Q[whale oil]+0.64[petroleum]) P-values in parentheses 

Variable I II III Variable provenance 
Price (log, $2007) -4.296*** 

(0.002) 
-2.777* 
(0.067) 

-3.059*** 
(0.014) 

Whales: Tower (1907); Petroleum: US Bureau of 
mines, Mineral resources of the US (annual) [Se-
ries Db56 in Historical Statistics of the US] (De-
flator, CPI, Sahr, 2010) 

Year (1800=1) 0.203*** 
(0.000) 

0.210*** 
(0.000) 

0.197*** 
(0.000) 

 

Post 1879 dummy -1.987* 
(0.090) 

-0.494 
(0.639) 

-1.714* 
(0.093) 

 

Index of industrial 
production 

-0.004*** 
(0.003) 

 -0.004*** 
(0.002) 

Series Ca19 in Historical Statistics of the US 

Real GDP per capita  -0.002** 
(0.028) 

 Series Ca11 in Historical Statistics of the US 

Price sub. whale oil 
(log, $2007) 

  -1.33* 
(0.078) 

 

Constant 19.99*** 
(0.000) 

19.17*** 
(0.000) 

19.42*** 
(0.000) 

 

Instruments Tonnage 
Whale 
population 

Tonnage 
Whale 
Population 

Tonnage 
Whale Popu-
lation 

Tonnage from Tower (1907) 
Whale Population estimated from Whitehead 
(2002) 

Regression F stat 146.93*** 131.23*** 170.87***  
Centered R2 0.919 0.920 0.934  
Uncentered R2 0.996 0.996 0.997  
N. Obs.  101 101 101  
Underidentification 
test  
 

4.733* 
(0.094) 

4.581 
(0.101) 

4.581 Kleibergen-Paap rk LM stat 
Rejection of null -> identified 

Weak ID test ()  58.84*** 115.24*** 33.89*** Kleibergen-Paap rk Wald F stat 
Significance -> relevant instruments 

Over ID test ()  
 

0.325 
(0.568) 

0.214 
(0.643) 

0.068 
(0.794) 

Hansen J stat 
Rejection of null -> overidentification 

 
To simplify the demand function for use in our simulations, we divide demand 
into two time periods: before and after an innovation (shown here as occurring 
in 1879) that reduces demand pressure on illuminating oils and estimate the re-
sulting demand equations holding the industrial production index constant at its 
value of the time period in question. Thus before such an innovation, we have 
 

 
7 0.2 36*10 tq e p ,  (1.1) 
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and after the innovation we have 
 

 
6 0.2 32.5*10 .tq e p   (1.2) 

 
We also consider the unlikely alternative that no innovation is discovered, but 
that demand for illumination grows along with industrialization. In this case we 
consider demand for illuminating oils will grow quite large, and seek to deter-
mine the dynamics of an optimally managed fishery if whales alone were used 
to meet this demand. In this case we estimate the demand function as 
 

 
10 0.2 31.4*10 ,tq e p   (1.3) 

 
Where the shift in the constant parameter reflects the growth in the economy 
that occurs post-1879 (and is in reality accommodated by the rapid expansion of 
electricity) but does not account for the electricity innovation itself. Thus it will 
allow us to investigate the role that increased pressures on the resource would 
play if sperm oil were to try to satisfy the market as it evolved. Thus, using 
equation 1.1, we forecast sperm oil use and pressures on whaling that accom-
modates some growth but does not expect a dynamic innovation, equation 1.2 
allows us to envision a reduction in pressure on the whales occurring at some 
future date, and using equation 1.3 we forecast heavier demand from greater in-
dustrialization without other resources for production. This allows us some po-
tential insights into the exchange between illumination sources and overall 
growth: if whale populations cannot even sustain growth along the lines de-
manded in eqn. 1.1, then the population would have been doomed without the 
coming of other sources of illumination. If, however, they could support such 
demand, then we suggest that the advent of the new technologies was not re-
quired to save the whales, though it was likely required to expand growth along 
the scale indicated by eqn. 1.3. In the unexpected event that the whale popula-
tion could even support demand along the lines of eqn. 1.2, then certainly the 
advent of petroleum cannot be credited with saving the whales. If the lowest 
level of demand (represented in eqn. 1.2 with new alternatives but not growth in 



 

15 

their demand) does accommodate preservation of the whales but the original 
demand (eqn 1.1) does not, then there is more evidence that the discovery and 
use of kerosene can be credited with preserving the whales. 
 
C. Whaling for oil: extraction of a renewable but exhaustible resource 
 
1. Marginal cost for sperm oil production 
 
We assume that the marginal cost of supplying sperm oil is non-declining in the 
quantity of sperm oil, qwt, and decreasing in the stock of sperm whales, nt. We 
then estimate, again using instrumental variables, a cost function for supply of 
sperm oil, particularly as a function of the whale population. Table 2 shows re-
sults for the cost function (we control for the ship’s logged destination, not re-
ported here.) The voyage data come from the American Offshore Whaling Da-
tabase (2011), which records over 10,000 whaling voyages, mainly over the 19th 
Century. The whale population data is calculated from Whitehead (2002), 
where the biologist estimates population levels for global sperm whale popula-
tions from 1712 to 2000 using a density dependent logistic growth model (see 
Appendix I). 
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Table 2: Instrumental Variables (2SLS) estimation for Marginal Cost 
function for sperm whale oil (dep. Var = log price sperm oil, 
gallons, $2007. P-values in parentheses 

Variable I II III IV 

Gallons sperm oil delivered 

to port (ln) 

0.247*** 

(0.000) 

0.239*** 

(0.000) 

0.201*** 

(0.000) 

0.177*** 

(0.000) 

Whale population, (ln) -8.55*** 

(0.000) 

-8.742*** 

(0.000) 

-3.183*** 

(0.000) 

-3.206*** 

(0.000) 

Year (1800=1) -0.13*** 

(0.000) 

-0.135*** 

(0.000) 

-0.009*** 

(0.000) 

-0.010*** 

(0.000) 

Year^2  0.0006*** 

(0.000) 

0.0006*** 

(0.000) 

  

Price subs. whale oil (ln, 

$2007) 

0.304*** 

(0.000) 

0.305*** 

(0.000) 

0.406*** 

(0.000) 

0.415*** 

(0.000) 

Months of voyage -0.00008 

(0.484) 

 -0.00003 

(0.802) 

 

Ship tonnage (max) 0.0009** 

(0.031) 

 -0.001*** 

(0.002) 

 

Constant 122.3*** 

(0.000) 

125.33*** 

(0.000) 

43.53*** 

(0.000) 

44.23*** 

(0.000) 

Other controls Destinations 

(n=23) 

Destinations 

(n=23) 

Destinations 

(n=23) 

Destinations 

Instruments Price of petro-

leum (gal, 

$2007) 

Price of petrole-

um (gal, $2007) 

Price of petrole-

um (gal, $2007) 

Price of petrole-

um (gal, $2007) 

Regression F stat 1527.6*** 1608.1*** 2000.6*** 2086.5*** 

Centered R2 0.763 0.756 0.746 0.747 

Uncentered R2 0.997 0.997 0.997 0.997 

N. Obs.  9794 9950 9794 9950 

Underidentification test  
 

1255.73*** 

(0.000) 

1209.71*** 

(0.000) 

473.67*** 542.86*** 

Weak ID test ()  1712.8*** 1613.9*** 570.13*** 651.53*** 

Clusters (by Vessel) 
 

1299 1344 1299 1344 
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Whitehead (2002) does not establish a minimum viable population for the 
sperm whales, so our mathematical model does not incorporate such a threshold 
directly. There is evidence that the minimum viable population may be very 
small indeed, as biologists now consider the Mediterranean population as dis-
tinct from the global population and consisting of only a few thousand, possibly 
only several hundred, whales (in a smaller space). (Notarbartolo di Sciara et al, 
2012). We hypothesize that a very high (conservative) estimate of a global 
threshold for population could exist at 300,000 whales. 
 
In Table 2 we present results from estimation of the marginal cost curve under 
four slightly different specifications. Supply (Price = marginal extraction cost in 
a competitive industry) is estimated as a function of quantity of sperm oil deliv-
ered from the vessel (instrumented with petroleum prices), estimated quantity 
of whales available, time (and time squared), the price of the substitute whale 
oil, the length of voyage and tonnage in the vessel (Table 2, Col. 1). We do not 
find that the length of the voyage itself has a significant impact on the marginal 
cost (supply price). This is possibly a function of the fact that prices are average 
annual prices and not individual prices received by the ships. Neither omission 
of length of voyage nor ship tonnage greatly affects the results (Col. II). Time 
captures much that is difficult to observe about the industry as a whole and we 
include it in a non-linear fashion as well in specifications I and II of Table 2. 
We omit the non-linear time factor in specifications 3 and 4 (Col III, IV). Re-
sults do not change dramatically though the influence of tonnage switches from 
having an expected positive impact on price to having a negative one in specifi-
cation 3(Col III) results. Thus for use in further (simplified) simulations, Col IV 
presents the preferred results. 
 
Using Table 2, Col IV, we focus on the relationship between the whale popula-
tion and the marginal cost, so we hold the price of the substitute whale oil con-
stant at its mean2 to obtain the marginal extraction cost function for the primary 
resource, whales, of: 
                                                           

2 We also include in the constant term the significant destination effects evaluated at their means. 



 

18 

 

19
0.01 0.177

0.321

3.49*10
( , , ) tC n q t e q

n
  

  
    

 
Thus marginal costs are slightly increasing in quantity harvested and decreasing 
in the stock level of the resource, where the stock, nt, evolves over time accord-
ing to the growth function for the sperm whale population and the harvest rate, 
discussed in Appendix 1. Furthermore there is an unspecified technological or 
similar component to the passage of time that lowers marginal costs.3 
 
As discussed below, we simplify this cost function further for our simulation, so 
that we linearize costs with respect to harvest quantity and leave the time trend 
to the constant term. This results in a cost function of 
 

 

16

2.8

5.85*10
( )qt t t

t

c n q
n


 . (1.4) 

 
This more tractable cost function for the simulation still captures accurately 
what evidence we have about the whaling costs experienced in the 19th C. 
These parameters for demand and marginal cost inform a dynamic model of the 
whale fishery. We simulate the fishery’s evolution over time under changing 
assumptions about the arrival of a cheap substitute (kerosene) in order to deter-
mine how the industry would have fared under differing levels of technological 
progress. 

III. Methodology and simulation 

A. The whale fishery 
 
We now have virtually all the elements needed to model how the sperm oil in-
dustry would have fared without the discovery of abundantly cheap mineral fuel 
                                                           

3 Starting from t=1, at t=100 MC fall non-linearly to 37% of original costs, all else constant. 
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oils, if the whale fishery were optimally managed (as opposed to the more real-
istic open access, discussed briefly but left for further analysis elsewhere). This 
will illustrate, in a sense, the time frame that existed for new discoveries, and 
show the pressures to discover new sources of illuminants. 
 
To determine the optimal use of the sperm whale resource over time, we write 
the (deterministic) maximization problem as 
 

     1
0

0 0

,max
wt

wt

q
rt

t t wt
q

t t

V N Max SW e D z dz c n q


 



 
    

 
  

  
 
Subject to 
 

 
 

 
 
where social welfare, SWt, is the net surplus from consumption of the whales, 
qwt, given the inverse demand , D-1(z) and the harvest costs c(n,q,t) as a posi-

tive, decreasing function of the population of whales ( 0nc   ) and the passage of 

time  0tc  , and non-decreasing function of the level of harvest, (c 0)
wq  . For 

the current iteration of this work, we ignore the time sensitive effects and sim-
plify marginal costs to a function of whale population and harvest levels, c(n,q). 
We further simplify by assuming costs are linear in harvest so that 

( , ) ( )t t t tc n q c n q  The system is subject to the equation of motion determined by 
the growth rate of the whales, n , which is in turn a function of the intrinsic 
growth rate, , the current population, nt, the carrying capacity of the oceans, 
K0, and a density dependent exponent, b, and illustrated in Appendix 1.4 

                                                           

4 Some functions, in particular the marginal cost of harvest with respect to the resource population, 
need translation from whales to gallons. This is accomplished by assuming that there are 35 gallons 
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The current value Hamiltonian for this problem is 
 

 1

0

(z)dz c(n)q ( ) q
wtq

t wt t wt tH D g n    
 where 0t    

 
and the necessary conditions for an optimal solution are 
 

 t t wt
t

H
n g n q




  




  
 

   't t t n t t t t
t

H
r r c n q g n

n
   
    




  
 

   1 0, t wt t t
t

H
D q c n

q


   
    0.tif thenq   
 

We define  1
t t wtp D q . Rearranging the necessary conditions and combining 

them with the time derivative on price gives us that the optimal harvest re-
quires: 
 

( '( ) r)*(p ( )) ( )* (n )
tt t t t t n tp g n c n g n c      

 
( ) ,t t wtn g n q   and 

 
( ( ))t t tp c n   . 

 
We use Mathematica 8 (see appendix II) to solve these equations simultaneous-
ly and to illustrate the patterns of whale populations, extraction rates, optimal 
price and cost over time. These results illustrate how the fishery could have 
                                                           

per barrel on average for sperm whale oil (Ellis, 1980) and about 25 barrels of oil per sperm whale, 
for a multiplicative factor of 875. 
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evolved under limited access (first best conservation) management. The actual 
open access nature of the fisheries increased the pressure on the resource but 
from the optimal solution we can discern whether the fishery was inherently 
doomed or whether good management, rather than discovery of a new resource 
source, would be sufficient to meet demand. We consider the three demand 
scenarios estimated from the data above in a deterministic setting. We then use 
Monte Carlo methods to investigate changes in parameters for additional sensi-
tivity analysis. 
 
Scarcity rent, t, is the difference between price and marginal harvest cost, and 
captures the dynamics of the model. If there is no shortage of whales, t=0 t  
and the dynamic problem collapses to a static problem. If, on the other hand, a 
resource grows scarcer over time, we expect the scarcity rent to rise, dramati-
cally so in the case of a resource dwindling to zero, for example, as is the case 
if the whales are pushed to extinction. Note that this can only happen if the 
growth function for the population of whales is critically depensated, which is 
not the biologists' assumption in the case of sperm whales, or if the cost of hunt-
ing the last whales does not rise toward infinity, contrary to what is generally 
assumed for most fish species, especially given the whaling technology of the 
day. If costs increase toward infinity, additional harvesting becomes infinitely 
unprofitable at low enough populations (Clark, 2005). In a case where it is prof-
itable to 'overharvest' - that is, to harvest to a point below maximum sustainable 
yield (MSY), then increased pressure from growing demand will result in either 
a series of oscillations in the harvest (and therefore in price and cost) over time 
or a somewhat tenuous equilibrium at an unstable steady state. Because the evi-
dence regarding the behavior of the sperm whale populations at low levels has 
significant uncertainty, we expect that reaching a period of chaotic behavior 
may well lead to unrecoverable stocks of the whales. 
 
We analyze the question from the standpoint of 1800, at which point we assume 
that the sperm whale population has already been drawn down to about 71% of 
its estimated carrying capacity (Whitehead, 2002), but is still above MSY. We 
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do this to determine whether the previous rates of harvest were too high or too 
low to maximize dynamic efficiency, given demand. If harvests were too high, 
we should find a period of lower harvests where the fishery can recover before 
it is more rapidly exploited to meet higher future demand. If harvests were too 
low, we should find a rapid drawdown of the population with no period of con-
servation. 
 
An important question is how fast would the demand for illumination grow 
without the advent of cheap petroleum illuminant? We investigate several pos-
sibilities that are based around the growth rate of the 19th century. The growth 
rate in industrial production (Davis, 2004) is on average 5.6% for the century 
while overall GDP growth is on average 4%. Rather than assume there is no 
technological change (e.g. the utilization of other illuminants as we see occur-
ring from 1850-1860 before petroleum) we build the demand for illumination 
above as if fuels were available, incorporating the advances those brought in ef-
ficiency to the production of light, but then assume the fuel itself would need to 
be provided by the whales. This defines the scope of the counterfactual more 
reasonably than assuming no advances in technology or production of such an 
important good. 

IV. Results 

A. Low demand case 
 
A1. Interest rate = 0.03 
 
Using parameterization determined by the lowest demand curve for illuminat-
ing oils (eqn 1.2), which still exhibits very rapid growth in demand of 20% 

( 0.2  ), we find that at an interest rate of three percent the whale population 
would eventually be exhausted, but the time frame for this exhaustion is over 
400 years if there is no critical population threshold for whale reproduction. If a 
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population of approximately 300,000 whales is required, then the time span is 
approximately 90-95 years. 
 
Figure 1 illustrates the optimal population level over the first 100 years, which 

pushes the population just below 300,000 whales ( 100 292,417n  ). If this is higher 
than the threshold for reproduction (as we expect it in fact is), the optimal popu-
lation is allowed to recover slightly and then a few years of heavier harvest may 
occur followed by a few quickly dampening ‘pulses.’ If not, then even this low-
est demand level for illuminating oils pushes the species to extinction. 
 
Figure 1: Optimal whale population over time 
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The optimal extraction path is shown in Figure 2. We see that there is a first 
year harvest to capture immediate rents, followed by a period of some resource 
conservation for about 40 years, allowing the population to grow higher be-
cause the growth in demand will make it worth even more in future time peri-
ods. 
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Figure 2: Optimal harvest over time, sperm whales 
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Then there is a rapid drawdown for about 15 years that then slows as marginal 
costs rise. Figure 3 shows the marginal costs over time. 
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Figure 3: MC sperm whale oil production, $2007/gallon 
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We note that the Marginal costs begin to steadily climb after about 50 years, 
which, from our start date of 1800, means that at mid-century, much as was 
witnessed, costs of production were rising. We estimate that in 1859, had this 
lower demand existed, the population of whales would be at 633,061 and the 
marginal cost of harvest at $3.30 per gallon ($2007 dollars). 
 
A2. Interest rate= 10% 
 
The results as interest rates change are similar to the above. Figure 4 shows the 
optimal extraction path for the case of an interest rate of 10% as an example. In 
all cases there is an initial drawdown in the first year, followed by conservation 
(for a shorter time than with the lower discount rate, as expected) and increased 
harvest. The cycles of harvest and conservation dampen as rates increase. There 
is slightly less conservation in the beginning but the resource is drawn down to 
about 300,000 whales in approximately 80-90 years regardless of discount rate 
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from 0.01 to 0.10. If there is no population threshold, the population continues 
at least 200 years for all rates. 
 
Figure 4: Optimal harvest path, r=0.10 
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Though the higher interest rates increase current resource pressures, these in-
creased early harvests drive up costs more steeply, curtailing later harvests. 
 
A3. Moderate demand 
 
Increasing the demand parameters to represent the case where there is no inno-
vation that reduces pressures on illuminating oils, but neither is there an in-
crease in demand for illumination as witnessed after 1879 (eqn 1.1) does not 
significantly change the pattern of the results above, though the time frame for 
preservation of the species is shorter and the initial drawdown in population is 
larger. In that case, the predicted population of whales at 100 years is 201,605, 
with marginal extraction costs of $82/gal. The 1859 population is expected to 
be 455,424 whales with MC of $8.4/gal. 
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B. High demand scenario 
 
B1. Interest rate 3% 
 
If the much higher demand (eqn 1.3) is assumed to exist, without alternative 
sources, the optimal harvesting suggests an immediate drawdown to a popula-
tion of about 200,000 whales and then a long period of conservation followed 
by faster harvesting from 80-95 years as price rises quickly, then another, short-
er conservation period and smaller spike as populations dwindle (Figure 5 
graphs population over time). Thus if the population does not crash at around 
n=300,000, the resource lasts for about 130 years before being driven to extinc-
tion. We interpret this to suggest that if demand for illumination had grown to 
the levels witnessed at the end of the 19th century and needed to be satisfied 
with only sperm oil rather than kerosene/petroleum and electricity, the pres-
sures on the fishery would certainly have been severe. If the species did have a 
population threshold above approximately 200,000 whales then an early extinc-
tion would indeed have been likely. However without this threshold the re-
source could have been exploited even in the face of extremely high and rapidly 
growing demand for over 100 years. The prices would have become extraordi-
narily high (figure 6) as well, which, while increasing pressure on extraction, 
should also have spurred innovation and exploration for new sources, as we in 
fact saw throughout the 19th Century. 
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Figure 5: Optimal whale population, high demand r=0.03 
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Figure 6: Optimal price path at high demand 
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V. Sensitivity analysis 

A. Uncertainty in biological parameterization 
 
We investigate parameter uncertainty using Monte Carlo simulation methods. 
We draw from the distributions provided in Whitehead (2002) for both the ini-
tial carrying capacity, K, and the intrinsic growth rate, g, to test sensitivity of 
the results to assumptions about the whale fishery’s size and growth rates. The 
carrying capacity is assumed to be a normally distributed random variable with 
mean 1,110,000 and standard deviation of 223,000 whales. The intrinsic growth 
rate is assumed to be a normally distributed random variable with mean 0.011 
and standard deviation 0.0025. 
 
A1. Moderate demand 
 
Using the estimated demand parameters from eqn 1.1, we find that over 632 tri-
als with random draws of K and g, the average population after 100 years is 
199,318 (std. deviation =19,149), with a minimum population of 131,656 
(K=863,338; g=0.0039) and a maximum of 265,751 (K=1.64*106; g=0.0182). 
In fact 51% of trials have predicted populations at t=100 of over 200,000 
whales. Figure 7 shows the histogram for the population at t=100. 
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Figure 7: Histogram of estimated whale populations, 1900, with moderate 
demand (eqn 1.1) 

  
 
A2. Potential threshold effects 
 
We calculate that under these uncertainty parameters for carrying capacity and 
growth, if the low level of demand were only so much higher as 6 0.2 39*10 tq e p , 
then maintaining a population of approximately 300,000 whales after 100 years 
would be quite unlikely. Only 1.15% of trials have an expected population of at 
least 300,000 whales after 100 years of optimal use, though 97% have a popula-
tion over 200,000. Running 520 simulations with that demand curve with ran-
dom draws of both K and g, we find a minimum population estimate of 
n=176,032 whales at t=100 (where K is 1.15*10^6 but g is only 0.004254) and 
a maximum of n=322,900 whales at t=100 (where K is 1.44*10^6 and 
g=0.18673). The mean estimate is 248,365 whales with a standard deviation of 
22,929. Assuming, therefore, a minimum viable population of 300,000, the 
whale fishery would indeed have been exhausted within 100 years. If, however, 
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the minimum viable population is no more than 175,000 whales, then we can be 
fairly certain the fishery could have withstood the low demand scenario. 
The highest deterministic demand function that allows for a population of at 
least 300,000 whales after 100 years is 6 0.2 32*10 tq e p , slightly lower than our 
estimated demand without kerosene but with electricity by 1879. 
 
A3. High demand without alternatives 
 
Repeating the exercise for the high demand case, we find in that case that after 
100 years, the average estimated population would be only 97,454 whales with 
a minimum of 53,672 (K=1.34*10^6 and g=0.0035) and a maximum of 151,395 
(K=1.08*10^6 and g=0.0189) whales. Thus if there is a minimum viable popu-
lation for sperm whales above 150,000, high demand would certainly have ex-
hausted the whales under the best of management scenarios. 
 
It is clear that uncertainty over the intrinsic growth rate is more detrimental to 
modeling than uncertainty over the carrying capacity. The correlation between 
the population after 100 years and the growth rate is 0.93, 0.95 and 0.97 respec-
tively for the low, moderate and high demand scenarios, while the correlation 
between the 100 year population and the carrying capacity is only 0.28 for the 
low demand, 0.26 for the moderate demand and 0.09 for the high demand case. 
 
B. Uncertainty in demand parameterization 
 
We create a simulation where the original demand function is as in equation 1.1 
for 1800, and the intensity of demand is allowed a shock at some time during 
the next 100 years. This shock occurs with 2/3 probability, as we draw the tim-
ing of the shock from a uniformly distributed random variable5 across 150 
years. 
 
                                                           

5 A future iteration of this paper will tie the draw on the timing of the shock to the price and costs of the 
oil, and will allow the shock to be either positive or negative. 



 

32 

We consider here a shock that reduces demand from eqn 1.1 to eqn 1.2. In this 
case, we find that when the demand shock occurs within the first 100 years 
(67% of trials), the population of the whales is on average 292,978 whales (std 
dev. 43,091) across 615 trials, and 40% of trials result in populations greater 
than 300,000. We compare this to the population at 100 years when the shock 
occurs any time over 150 years, where the expected population at t=100 is only 
262,343 (std devn=57,363), with only 27% of total runs having the population 
above 300,000 at t=100. The timing of any transition away from sperm whale 
oil use could indeed have made a difference in the longevity of the whales if 
there is a population threshold around 300,000 whales. 

VI. Discussion and Conclusions 

We estimate, using instrumental variables techniques to account for endogenei-
ty, the demand for illumination oils in the 19th century and the marginal cost of 
producing one of those illuminating oils: sperm whale oil. We then use these es-
timates to calibrate a bio-economic model of the dynamics of the whale fishery 
over a hypothetical 19th century, in which the stock of whales would have been 
optimally managed. Under these conditions, we simulate the population trajec-
tory of whales as costs and prices evolve over time in response to the resource 
pressures. We explore the implications of simple shifts in demand. These reflect 
the conflicting possibilities of increasing demand that is not satisfied by other 
discoveries (petroleum) or innovations (electricity) on the one hand, or of de-
creasing demand due to such discoveries and innovations. 
 
Our goal is to determine the risk to the sperm whale populations, in order to 
support or contradict the contemporary claims that the discoveries of petroleum 
in fact saved the whales from extinction, as well as those from earlier economic 
historians using different models for population and growth as well as supply 
and demand. Our results suggest that the answer hinges in large part on the 
question of whether there is a minimum viable population for the whales to sur-
vive, and if so, what that population is. This question is still unanswered in sci-
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ence, although the current population estimate for sperm whales globally is ap-
proximately 360,000 (Whitehead, 2002; Notarbartolo di Sciara, 2012). In par-
ticular, we find that with high demand, pressure on the resource drives the pop-
ulation quickly down to less than 1/5 of its natural carrying capacity (to around 
200,000 whales from 1,110,000), even under optimal management,6 so that the 
fishery would not survive and would not have been able to unilaterally fulfill 
the growth needs of the latter portion of the 19th century. The whales would, 
however, have been likely to be able to sustain moderate growth in demand 
over the century and the claims that the 1859 discovery of petroleum decidedly 
saved the sperm whale population seem overreaching. In this, we agree with the 
findings of Davis et al., 1988, though we believe their estimates of the popula-
tion of whales is much too high and that the results depend more heavily on in-
creasing costs of resource extraction than on abundance. 

                                                           

6 If there is a known minimum viable population, the management incentives are likely to shift, creat-
ing a ceiling for the harvest that trades off additional whales today for future profits over extinction. 
This is not necessarily the case, however, as it depends on the ability of the species to recover quickly 
enough to warrant waiting for some recovery over harvesting all that is possible in the present. We do 
not model this here. 
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VIII. Appendix 1 

Figure A.1 shows the estimated growth function for sperm whales generated 
from Whitehead (2002). He estimates that carrying capacity, or the population 
of whales before harvesting (N0) began in 1712, was 1,110,000 whales. Using 
population estimates and harvest records from 1800 to 1999, he estimates the 

annual biological growth function to be 
1.4

0

0.011 1 t
t

n
n

K
n

 
  

 
 . Thus the maximum 

sustainable yield, or the highest number of whales that can be taken in a year 
without causing harvest to exceed growth, is estimated to be 2,392 whales per 
year (shown on Figure). 
 
Note that this is considerably lower than the MSY estimate of 13,893 whales 
used by Hutchins (1988), which is based on higher initial expected populations 
of between 1.8 and 2.4 million and a higher growth rate. In fact, using the upper 
bounds estimated by Whitehead (2002), the highest his data allows MSY to be 
is 5,172 whales, still less than half the value used by Hutchins (1998) and Davis 
et al (1988). This throws their finding that sperm whales were not being over-
hunted into doubt on a purely biological basis, though costs are still a factor. 
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IX. Appendix II 

Mathematica estimation (deterministic case. Monte Carlo set-up available from 
author) 
 
Clear[g,gprime,n0,nmax,c,p0,pf,cprime,t0,tf,r,qw,gamma,eta,alpha,neqn,peqn,n
opts, nopt, n,p,t, K,result,x] 
 
g=0.011*n[t]*(1-(n[t]/K))^1.4 (* growth rate of whales *) 
 
gprime=D[g,n[t]] (*rate of change in growth*) 
 
K=1110000 (*carrying capacity*) 
n0=0.71*K (*1800 estimated popn*) 
 
nmax=First[Select[n[t]/. Solve [g == 0, n[t]], #>0 &, 1]] 
 
c=(5.85*10^16)/((n[t])^2.8) (*Marginal cost function wrt q*) 
 
p0=8 (*estimated initial price per gal*) 
 
pf=42 (*estimated final price per gal*) 
 
cprime=D[c,n[t]]/(1/875) (*Rate of change in marginal costs as function of 
whale population, converted back to gallons*) 
 
t0=1 
 
tf=100 (*time frame for simulation *) 
 
r=0.03 (*interest rate*) 
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gamma=0.2 (*growth rate of demand*) 
eta=3 (*elasticity of demand*) 
 
alpha=9000000 
 
qw=alpha *(E^(gamma*(t)))*((p[t])^(-eta) (* demand function, g/yr *) 
 
neqn=n'[t]==g-qw (*equation of motion, whale population*) 
 
peqn=p'[t]==(-r+gprime)*(p[t]-c)-cprime *g (*first order condition*) 
 
nopts=n[t] /. Solve[neqn,n[t]] 
 
nopt=Select[nopts, Im[#] == 0 && Re [#] >0 && Re[#]<nmax &, 1] 
 
result=NDSolve [{neqn, peqn, n[t0] == n0, p[t0] == p0},{n,p},{t,t0, tf}] 
 
Show[Plot[p[t]/.result, {t, t0, tf}, PlotStyle->{Blue}], Plot[c/.result, {t, t0, 
tf},PlotStyle�{Red}], 
 
Graphics[Text["Price",{tf,pf},{-1,0}]], (* Graphics[Text["Cost",{tf,cf},{-
1,0}]],*) 
 
PlotLabel�"Optimal Price"(* and Cost "*), AxesLabel->{"Years", "Dollars"}, 
AxesOrigin->{t0,0}] (* Graph time-paths of price and cost *) 
 
Show[Plot[n[t]/.result,{t,t0,tf}],PlotLabel->"Optimal Population", 
 
AxesLabel->{"Years", "Whales"}, AxesOrigin->{t0,0} (* Graph time-path of 
popn *)  
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fnn[t_]=(n/. First [result])[t] (*population as function of time to ease plotting 
costs and quantities*) 
fnp[x_]=(p/. First[result])[x] (* price as function of time to ease plotting*) 
 
fnc[t_]=(5.85*10^16)/(fnn[t]^2.8) (*marginal costs as function of population at 
t*) 
 
fnq[t_]=alpha E^(gamma(t-t0))(fnp[t])^(-eta) (* extraction as function of price 
at time t*) 
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