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ABSTRACT: Lithium niobate Mach−Zehnder modulators (MZMs)
are present in a wide range of technologies and though fulfilling the
performance and reliability requirements of present applications, they
are becoming progressively too bulky, power inefficient, and slow in
switching to keep pace with future technological demands. Here, we
utilize plasmonics to demonstrate the most efficient (VπL = 0.23
Vcm) lithium niobate MZM to date, consisting of gold nanostripes on
lithium niobate that guide both plasmonic modes and electrical signals
that control their relative optical phase delay, thereby enabling
efficient electro-optic modulation. For high linearity (modulation
depth of >2 dB), the proposed MZM inherently operates near its
quadrature point by shifting the relative phase of the signal in the
interferometric arms. The demonstrated lithium niobate MZM
manifests the benefits of employing plasmonics for applications that demand compact (<1 mm2) and fast (>10 GHz) photonic
components operating reliably at ambient temperatures.
KEYWORDS: Surface plasmon polaritons, Pockels effect, optoelectronics, nanophotonics, integrated optics

Mach−Zehnder Modulators (MZM) are key devices for
electric-to-optical conversion in integrated photonics,

telecommunications, and sensing.1−4 In an integrated MZI
modulator, a guided light beam is split into two paths and a
phase difference between the two waveguide arms is induced
using an electro-optically active material, most commonly
lithium niobate (LN, LiNbO3) due to its preferential physical
properties, such as moderate and stable electro-optic activity
(∼30 pm V−1) and wide optical transparency (0.35−4.5 μm).5

The phase difference in the waveguides results in a modulation
of the output intensity by letting the phase-shifted beam
interfere with a reference beam when the two waveguides are
combined. Major performance limiting factors in terms of
modulation bandwidth, modulation depth, energy per bit and
footprint of an MZM are determined by the electro-optic
efficiency of the phase-shifters.6 As photonic technology
utilizes poorly confined optical waveguides (titanium-indif-
fused or proton-exchanged in bulk LN)7−9 which are limiting
the electro-optic interaction, the efficiency of conventional
MZM remains low. Thin-film lithium niobate modulators10−15

lead to improvements in terms of compactness, operation
speed and energy efficiency, while still demanding relatively
long (on the mm scale) interaction lengths due to fundamental
limitations in the achievable overlap between the optical and
modulating electric fields.

Plasmonic lithium niobate technology16,17 has recently
emerged as a strong contender to overcome current perform-
ance limitations by providing electro-optic phase shifters with
the highest efficiency ever reported in a lithium niobate device.

Because of the ultrafast Pockels effect (with a response time in
the order of femtoseconds19) utilized in plasmonic lithium
niobate devices with high modulation efficiency characterized
by a voltage-length product as low as VπL = 0.21 Vcm, small
device footprints with increased operation bandwidths far
beyond 100 GHz are enabled. Among the demonstrated
performance improvements in plasmonic lithium niobate
devices, the implementation of an MZM which utilizes the
extremely high modulation efficiency in plasmonic lithium
niobate phase shifters remained unexplored and has yet to be
demonstrated.

Here, we utilize the plasmonic lithium niobate platform to
enable an efficient (VπL = 0.23 Vcm) and fast (≥10 GHz)
integrated MZM formed by phase shifters consisting of two
only 15 μm long plasmonic strip waveguides which supports
both the optical signals converted to surface plasmon
polaritons (SPPs) propagating at metal−dielectric interfaces
and the electrical signal introducing the electro-optically
induced phase shift.20−25 The extreme confinement of the
corresponding optical and electrostatic fields and the large
overlap between the corresponding fields opens a path for
novel highly efficient lithium niobate MZM.
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The studied asymmetric plasmonic lithium niobate MZM is
based on two subwavelength gold nanowires as active phase
shifter which are connected to two Y-branches serving as
integrated waveguide splitter and combiner (Figure 1). Each
gold nanowire supports the propagation of SPP modes guided
along the nanowire with subwavelength field confinement,26−28

thereby acting as an ultracompact waveguide in the nano-
photonic integrated circuit. The plasmonic mode is launched
by positioning a diffraction-limited beam (λ0 = 1550 nm) on
the terminating metallic grating coupler with a calculated
coupling efficiency of 10% at the wavelength of λ0 = 1550 nm.
The mode is split by an integrated branch junction, which
feeds the two active phase shifters by a 150 nm wide isolating
air gap. The two 15 μm long waveguides of the phase shifter
section have different widths, that is, one waveguide has the
width of w1 = 250 nm while the other has the width of w1 =
550 nm, and they are separated by edge-to-edge separation
distance of g = 550 nm. Because of the dependence of the
waveguide geometry on the mode effective index of the
supporting plasmonic mode (Figure 1f), the operation point of
the MZM is passively shifted near the quadrature point (Figure
1g). This asymmetric configuration thereby offers high degree
of modulation linearity at the operation regime of the MZM
and the collapse of nonlinear distortions in the modulation
spectrum. The refractive index of lithium niobate is modulated
by applying a voltage across the two parallel wires comprising
the plasmonic waveguides, and therefore the phase of the
plasmonic modes propagating along them is shifted. Because of
the Pockels effect in LN, the refractive index changes linearly
to the applied electric field. The largest electro-optic coefficient
r33 is along the optic axis of the LN crystal. Therefore, the
electrical field Ez along the out-of-plane direction results in the
strongest change of the extraordinary refractive index ne in z-
cut LN, according to Δne(Ez) ≈ -0.5r33ne

3Ez. Considering the
electric field distribution E(x, z) when the wires are biased
(Figure 1c), the change of the refractive index is mainly located
underneath the Au nanowires with an opposite modification
between the individual wires due to an opposite direction of
the electric field. The large overlap between the modification of
the refractive index and the optical field distribution results in a

significant phase change with opposite directions in the two
optical channels (push−pull phase modulation). Because of a
different waveguide geometry, the strength of the electro-optic
interaction is nonidentical for the two individual phase shifters.
The optical mode and the electrostatic field are stronger
confined in the narrower waveguide (w1 = 250 nm) resulting in
a higher modulation efficiency, characterized by the calculated
voltage-length product of 0.37 Vcm, compared to the wider
phase shifter waveguide (w2 = 550 nm) exhibiting a voltage-
length product of 0.57 Vcm. As the MZM inherently
introduces phase shifts in push−pull operation, the voltage-
length product of the device is reduced to 0.23 Vcm (Figure
1c-e). For the electrical isolation between the two individual
phase shifter waveguides, isolating gaps between the phase
shifters and the Y-branches are required. The separation
between the waveguides is designed to be large enough to
prevent parasitic directional coupling between the nonidentical
waveguides (Supporting Information Note S2). Furthermore,
the isolating gap between the phase shifters and the Y-branch is
small enough (g ≪ λSPP) to allow optical transmission through
the air gap. The scattering losses are characterized as a function
of the gap size (Figure 2). For the nominal gap size of 150 nm,
which is much smaller than the wavelengths λSPP,1 = 725 nm
(w1 = 250 nm) and λSPP,2 = 720 nm (w2 = 550 nm) of the SPPs
propagating along the phase shifters, an optical loss of ∼3.5 dB
per isolating gap is estimated. Furthermore, the propagation
loss is investigated by an array of single waveguides with
different length. The propagation loss in a 15 μm long and 350
nm wide waveguide is estimated to be 19.5 dB, which indicate
much higher losses than expected from simulations (0.35 dB/
μm) and are likely attributed to additional losses due to the
titanium adhesion layer and the grain boundaries of the
polycrystalline gold nanowires.

The proposed MZM device is characterized by positioning a
focused linearly polarized beam (λ0 = 1550 nm) onto the
grating coupler at normal incidence (Supporting Information
Note S1). The SPPs are launched and feed the phase shifters at
the interferometric arms of the MZM before the signals
interfere at the opposite Y-branch. For obtaining the Mach−
Zehnder transfer function, the scattering signal of the output

Figure 1. Plasmonic lithium niobate unbalanced MZM. (a) Conceptional image of electro-optic modulation in the MZM. The inset shows the
cross-section of two parallel waveguides with the width of w1 = 250 nm and w2 = 550 nm, separated by 550 nm and placed on bulk z-cut lithium
niobate (LN, LiNbO3) substrate. (b) False-colored scanning electron microscope (SEM) image of an investigated MZM. The scalebar represents 2
μm. (c) Color-coded electric field and its contours upon applying a bias of 25 V. (d) Change of the extraordinary refractive index ne due to the
electro-optic (linear) Pockels effect in lithium niobate. (e) The optical field distribution of the antisymmetric mode overlaps with the electro-
optically induced change of the refractive index in LN. (f) Mode effective index neff as a function of the waveguide width. (g) Transfer function for
the MZM with 15 μm phase-shifter length.
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grating is spatially filtered and detected with an infrared
photodiode. The voltage-dependent output intensity follows
the expected transfer function of an unbalanced MZM
exhibiting a passive phase shift of 0.28π (Figure 3a).
Continuous, robust, and quasi-linear intensity modulation
between −25 V and +25 V is observed with a maximum
modulation depth of 2.5 dB. The significant modulation in the
ultracompact MZM characterized by the voltage-length
product of 0.23 Vcm represents to-date the highest modulation
efficiency in a lithium niobate MZM (Supporting Information
Note S3). Dielectric breakdown along the isolating nanogaps
restricts the maximum applicable voltage which limits the
achievable depth of modulation but can potentially be fully
avoided by interfacing the plasmonic phase shifters with
dielectric nanophotonic waveguides.23,24,29 Capitalizing on the
wide optical transparency of lithium niobate and the relatively
low plasmonic losses at infrared wavelengths, spectrally

broadband operation over the telecommunication wavelength
bands S, C, and L (1500−1600 nm) with <6 dB modulation
depth variation is demonstrated. The observed variations are
caused by the wavelength dependence of the electro-optic field
overlap and the shift of the operation point in the transfer
function.17 The electro-optic frequency response of the MZM
is characterized from 1 MHz to 10 GHz (Figure 3c). The
device exhibits a flat frequency response except a dip of −7 dB
at the frequency 2.8 ± 1 GHz which is likely to be induced by
nonideal impedance-matching of the used electrical feedline.
The calculated device capacitance of only 3.3 fF indicates
potential operation at frequencies above 900 GHz at 50 Ω
resistive load ( f = 1/[2πRC]), which meets the future
bandwidth demands for optical integrated circuits.

■ DISCUSSION
By utilizing plasmonic lithium niobate technology, we
demonstrated a broadband Mach−Zehnder modulator featur-
ing a half-wave voltage-length product of 0.23 Vcm, which to
date is the lowest value for a lithium niobate MZM. Spectrally
broadband operation with <6 dB modulation depth variation
over the optical telecommunication wavelengths (1500−1600
nm) and high-speed operation up to 10 GHz (with a potential
bandwidth of 900 GHz) was demonstrated. Highly linearity
modulation response is realized by passive control of the
relative phase in the nonidentical waveguides forming the
interferometric arms. Optical transmission and scattering losses
introduced by the isolating air gap have been characterized and
can potentially be further reduced by using a high-quality
(monocrystalline) Au platform for the plasmonic phase
shifters18 and by eventually interfacing the plasmonic wave-
guides with a low-loss photonic circuit.24 As lithium niobate
provides the critical material properties for practical deploy-
ment in electro-optic modulation applications, it remains the
material-of-choice for telecommunication technology. By
demonstrating the possibility of realizing a lithium niobate
MZM that harvests the attractive feature of plasmonics to
guide both coupled electromagnetic modes and electrical
signals that control their phase shift in the same metal circuitry,
we enabled an exceptionally compact and efficient MZM with
potential applications in next generation high speed electro-
optics that can fulfill the performance-demanding needs of
future data processing and quantum technologies.

■ METHODS
Simulations. Numerical simulations of the electro-optic

response, the optical losses and the coupling efficiency of the
MZM were carried out using a commercial finite element
method solver (Comsol Multiphysics 5.5). For the electrostatic
simulations, the cross-section of the two phase shifters is
modeled with the relative permittivity ϵair = 1 of air and the
strain-free static relative permittivity tensor of lithium niobate
(ϵxx = ϵyy = 27.8, ϵzz = 84.5) taken from Jazbinsek et al.30 The
electrostatic field distribution E(x,z) in the phase shifter cross-
section is calculated with two gold electrodes and set to ground
and Vbias.. The electro-optically induced birefringence in LN is
calculated by using the Pockels coefficients from Jazbinsek et
al.30 (with the diagonal terms, i.e., Δnii = −0.5riiznii3Ez, with rxxz
= ryyz = 10.12 pm/V and rzzz = 31.45 pm/V. The optical mode
analysis is conducted by considering the lateral distribution of
the electro-optically modified refractive index of LN, whereas
the unmodified refractive indices of Au and LN are taken from

Figure 2. Investigation of the optical losses in a single plasmonic
waveguide consisting of a 50 nm thick stripe and an air gap for electric
isolation. (a) Electric field distribution simulated for a waveguide with
grating coupler and isolating gap of 100 nm. (b) Experimental optical
far-field image captured by an infrared camera with a spatial filter at
the output port. The laser beam (λ0 = 1.55 μm) is positioned on the
left grating coupler with its reflection being blocked in front of the
camera to prevent image overexposure. The structure design is
superimposed as a guide to the eye. (c) Measured normalized
transmission as a function of the width of the isolating gap. (d)
Measured waveguide transmission as a function of the waveguide
length without an isolating gap.
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Johnson and Christy31 and Zelmon et al.32 (nxx = nyy = no =
2.211, nxx = ne = 2.138 at λ0 = 1550 nm). Possible losses
introduced by imperfect Y-splitting elements are neglected and
a splitting ratio of 0.5/0.5 is assumed.

Sample Fabrication. The Mach−Zehnder modulators are
fabricated on commercially available z-cut lithium niobate
substrates by electron beam lithography (using a scanning
electron microscope JEOL JSM-6490LV with an acceleration
voltage of 30 keV) in spin-coated 250 nm thick PMMA
positive resist and a 40 nm thick conductive polymer layer
(AR-PC 5090, Allresist) which serves as a metallic charge
dissipation layer during the writing (electron doses varying
between 200 and 250 μC/cm2). After resist development, the
devices are formed by depositing a 3 nm titanium adhesion
layer and a 50 nm gold layer by thermal evaporation and
subsequent 8 h lift-off. RF feed lines are patterned beforehand
on the LN chip by shadow masks metal deposition (5 nm Ti/
100 nm Au).
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 S1: Optical setup for the electro-optic characterization of the plasmonic Mach-Zehnder modulators

Figure S1 Schematic of the setup used for the electro-optic characterization of the plasmonic lithium niobate 
Mach-Zehnder modulators (MZM). The optical path is illustrated as red lines and the electrical wiring as 
dashed black lines. A linearly polarized light beam from a wavelength tunable IR laser is used as an excitation 
source. After amplifying the beam with an Erbium Doped Fiber Amplifier (EDFA) and passing a polarizer (P) 
and a half-wave plate (HWP), the laser beam is focused on the sample surface at normal incidence with an IR-
objective (×100 magnification, NA = 0.95). The scattered optical signal is collected by the same objective. A 
spatial filter selects the scattered signal at the output grating before the signal is analyzed by an infrared camara 
or a high-speed photodiode. A detailed description of the RF measurement used for characterizing the 
frequency response of the device can be found in [3].

S3: Coupled Mode formalism

The performance of our device can be well explained within the coupled mode formalism.1,2 Here we will 

continue using the variables and theoretical description introduced in our previous work.3 However, in this 

case, the waveguides are not identical, therefore it is better to introduce the following auxiliary variables:

,        ,                                            (1.1)𝜅n ≡
1

Δ𝛽n
=

2𝜅
Δ𝛽 𝛿 = 1 + 𝜅n

2

where  is the normalized coupling coefficient dependent on the waveguide separation. With the above 𝜅n

variables, the propagation constants of even and odd modes are

                                                         (1.2){𝛽even = 𝛽avg +
Δ𝛽
2 𝛿

𝛽odd = 𝛽avg ―
Δ𝛽
2 𝛿

 

Thus, the normalized coupling coefficient can be determined from the propagation constants of each individual 

waveguide and hybrid even and odd modes:

                                                   (1.3)𝜅n = (𝛽even ― 𝛽odd

Δ𝛽 )2
― 1



Figure S2. Coupled-mode analysis of the plasmonic phase shifters as a function of the edge-to-edge waveguide 

separation with two parallel Au nanowires with a width of w1 = 250 nm and w2 = 550 nm at zero applied 

voltage. The demonstrated electro-optic phase shifter has an edge-to-edge separation of 550 nm (vertical dash 

line). (a) Mode effective indices of the odd (solid) and even modes (dashed), compared to the ones of each 

individual waveguide modes (dotted and dash-dotted lines). (b) Normalized coupling coefficient, , as a 𝜅n

function of the waveguide separation.

The evolution of the electromagnetic field in the system is the following:

            (1.4)
{𝐄(𝑥,𝑦,𝑧),𝐇(𝑥,𝑦,𝑧)} =  [{𝐄𝟏(𝑥,𝑧),𝐇𝟏(𝑥,𝑧)}𝛼even + {𝐄𝟐(𝑥,𝑧),𝐇𝟐(𝑥,𝑧)}]𝑆even𝑒𝑗𝛽even𝑦

+ [{𝐄𝟏(𝑥,𝑧),𝐇𝟏(𝑥,𝑧)}𝛼odd + {𝐄𝟐(𝑥,𝑧),𝐇𝟐(𝑥,𝑧)}]𝑆odd𝑒𝑗𝛽odd𝑦,

where  and  are constants, determined from initial boundary conditions, and 𝑆even 𝑆odd

                                                         (1.5){𝛼even =
1
𝜅n

(1 + 𝛿)

𝛼odd =
1
𝜅n

(1 ― 𝛿)
 

One can already notice that, in the case of weak coupling ( ), , , , , 𝜅n→0 𝛽even→𝛽1 𝛽odd→𝛽2 𝛼even→∞ 𝛼odd→0

that is, even and odd modes simplify to being simply the modes of individual waveguides.

The above eq. (1.3) can be rewritten as 

           (1.6){𝐄(𝑥,𝑦,𝑧),𝐇(𝑥,𝑦,𝑧)} = 𝐴1(𝑦){𝐄𝟏(𝑥,𝑧),𝐇𝟏(𝑥,𝑧)} + 𝐴2(𝑦){𝐄𝟐(𝑥,𝑧),𝐇𝟐(𝑥,𝑧)},

where

                                    (1.7){𝐴1(𝑦) = 𝑒𝑗𝛽avg𝑦(𝛼even𝑆even𝑒𝑗
Δ𝛽
2 𝛿𝑦 + 𝛼odd𝑆odd𝑒 ―𝑗

Δ𝛽
2 𝛿𝑦)

𝐴2(𝑦) = 𝑒𝑗𝛽avg𝑦(𝑆even𝑒𝑗
Δ𝛽
2 𝛿𝑦 + 𝑆odd𝑒 ―𝑗

Δ𝛽
2 𝛿𝑦)



In our MZM device, the light is coupled into a single-waveguide mode of the input Y-branch. Then the power 

is split equally into both arms (w = 400 nm each) at the symmetric Y-branch output (i.e., it is transformed into 

the even mode), and coupled via the air gap into each of waveguides (w1 = 250 nm and w2 = 550 nm). Because 

these waveguides are evenly different from the Y-branch waveguide (i.e., one is 150-nm narrower and another 

is 150-nm wider), it is reasonable to assume the same coupling efficiency via the air gap. Then, without losing 

generality, one can assume that the excited fields in each waveguide are

                                                     (1.8)𝐴1(0) = 𝐴2(0) = 1 a.u.

These fields change upon propagation according to the above eq. (1.7) and reach the input of the second output 

symmetric Y-branch. The output Y-branch does the same as the first one: it converts even mode of its two-

waveguide part into a single-waveguide mode, while the odd mode is scattered out and back reflected. Thus, 

the overall MZM output transmittance, neglecting coupling losses through air gaps, will be the following:

                                                               (1.9)𝑇 = |𝐴1(𝐿) + 𝐴2(𝐿)
2 |2

Using initial condition (1.8) with (1.7), one can find

                                             (1.10){𝑆even =
1 ― 𝛼odd

𝛼even ― 𝛼odd
=

𝛿 ― 1 + 𝜅n

2𝛿

𝑆odd =
𝛼even ― 1

𝛼even ― 𝛼odd
=

𝛿 + 1 ― 𝜅n

2𝛿

Inserting this into (1.9) will result in the following expression:

                      (1.11)

𝑇 = 𝑒 ―2Im {𝛽avg𝐿}|𝛼even + 1
2 𝑆even𝑒𝑗

Δ𝛽
2 𝛿𝐿 +

𝛼odd + 1
2 𝑆odd𝑒 ―𝑗

Δ𝛽
2 𝛿𝐿|2

= 𝑒 ―2Im {𝛽avg𝐿}|1 + 𝛿 + 𝜅n

2𝜅n

𝛿 ― 1 + 𝜅n

2𝛿 𝑒𝑗
Δ𝛽
2 𝛿𝐿 +

1 ― 𝛿 + 𝜅n

2𝜅n

𝛿 + 1 ― 𝜅n

2𝛿 𝑒 ―𝑗
Δ𝛽
2 𝛿𝐿|2

= 𝑒 ―2Im {𝛽avg𝐿}|𝛿 + 𝜅n

2𝛿 𝑒𝑗
Δ𝛽
2 𝛿𝐿 +

𝛿 ― 𝜅n

2𝛿 𝑒 ―𝑗
Δ𝛽
2 𝛿𝐿|2

= 𝑒 ―2Im {𝛽avg𝐿}|cos (Δ𝛽
2 𝛿𝐿) + 𝑗

𝜅n

𝛿 sin (Δ𝛽
2 𝛿𝐿)|2

In the case of negligibly small coupling ( ), the transmittance is simply 𝜅n = 0

                                     (1.12)𝑇0 = 𝑒 ―2Im {𝛽avg𝐿}|cos (Δ𝛽
2 𝐿)|2

.

The first factor  is simply the average amplitude loss due to the absorption in the waveguides. Then, 𝑒 ―2Im {𝛽avg𝐿}

by changing the applied voltage, one can tune  to modulate the output between maxima and minima. In our Δ𝛽

MZM device, the length L is chosen to be in the quadrature point, that is, , , where Re {Δ𝛽0

2 𝐿} =  
𝜋
4 𝐿 =  

𝜋
2Re {Δ𝛽0} Δ



 is the value at zero applied voltage. The minima and, thus, the modulation extinction ratio is limited by 𝛽0

uneven losses in each waveguide, that is, 

           (1.13)

𝑇0, max

𝑇0, min
≈ |cos (𝑗Im {Δ𝛽}

2 𝐿)| ―2
= |cosh (1

2Im {Δ𝛽}𝐿)| ―2
= |cosh (1

2Im {Δ𝛽}𝐿)| ―2

= |cosh (2𝜋Im {Δ𝛽}
Re {Δ𝛽0} )| ―2

However, in the real device it is necessary to place both waveguides close in order to reduce the modulation 

voltage, which leads to the non-zero coupling. It is reasonable to assume, that it is the coupling coefficient 𝜅 =

, which stays nearly constant during voltage tuning, since it is a measure of the field overlap between mode 
Δ𝛽𝜅n

2

profiles of each waveguide modes. The validity of this assumption is confirmed by rigorously calculating the 

propagation constants for individual waveguide modes and those of even/odd supermodes for our separation 

of 550 nm as a function of the applied voltage (Figure S3a), and then calculating the coupling coefficient 

(Figure S3b).

Figure S3. (a) Mode effective indices of the odd (solid) and even modes (dashed), compared to the ones of 

each individual waveguide modes (dotted and dash-dotted lines) as a function of the applied voltage. (b) The 

coupling coefficient  as a function of the applied voltage.𝜅

The effect of coupling [evaluation of the equation (1.11), using both the approximate model with a constant 

coupling coefficient  and a precise model with its voltage dependance, is shown in Figure S4 below. It 𝜅

becomes thereby clear, that there is a trade-off in the proposed device: the operation voltage can be reduced 

with a price of the reduced modulation depth.



Figure S4. Total transmission as a function of the voltage-dependent waveguide effective mode index 

modification, , estimated for the actual coupling coefficient of  at 550 nm waveguide Re {Δ𝛽/𝑘0} 𝜅550

separation (solid), zero coupling coefficient  (dashed), and for twice as large coupling coefficient, 𝜅 = 0 𝜅 = 2

 (dotted), assuming voltage-independent coupling coefficient. Results for the rigorous simulations with 𝜅550

voltage-dependent  are plotted with dash-dotted line.𝜅550

S3: Comparison with state-of-the-art electro-optic Mach-Zehnder modulators 

Material Platform r33  /
pm⋅V -1

Thermal 
stability

V𝜋 ⋅L / 
V ⋅ cm 

Device 
footprint

Phase shifter 
Insertion loss / 
dB 

 Reference

LN

LN

PZT

LN

LN

LN (Plasmonic)

EOP M3 

EOP YLD-124 (Plasmonic) 

EOP DLD-164 (Plasmonic)

30

30

61

30

30

30

91

100

180

+

+

+/-

+

+

+

-

-

-

22

6.4

3.2

2.2

1.8

0.23

0.11

0.012

0.006

-

+/-

+/-

+/-

+/-

+

-

+

+

< 3

0.3

0.05

0.4

1.5

19.5

2.5

6

2.5

[4]

[5]

[6]

[7]

[8]

Our work

[9]

[10]

[11]

Table S1. Comparison of state-of-the-art electro-optic Pockels MZM modulators ordered by the half-wave 
voltage-length product. The material platform used in the individual modulator devices are lithium niobite 
(LN), Lead zirconate titanate (PZT) and electro-optic polymers (EOP). The insertion loss is defined by the 
waveguide propagation loss in the phase-shifter section. The thermal stability is classified by the threshold 
temperature  of structural phase transition in the material to be low (-) at < 100 °C, medium (+/-) at 100 𝑇𝑡 𝑇𝑡

°C <  < 300 °C or high (+) at  > 300 °C. The footprint refers to the surface area occupied by a structure on  𝑇𝑡 𝑇𝑡

the chip to be small (+) with the area A < 1 mm2, medium (+/-) with 1 mm2 <  A < 1 cm2 or large (-) with A 
>1 cm2.
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