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Abstract

Within a standard risk-based asset pricing framework with rational expecta-

tions, realized returns have two components: Predictable risk premiums and

unpredictable shocks. In bad times, the price of risk increases. Hence, the

predictable fraction of returns – and predictability – increases. “Disagreement”

(dispersion in analyst forecasts) also intensifies in bad times if (i) analysts report

(close to) risk-neutral expectations weighted by state prices, which become

more volatile, or (ii) dividend volatility changes with the price of risk – for

example, because consumption volatility changes. In both cases, individual

analysts produce unbiased forecasts based on partial information.

JEL Code: G11, G12, G14.

Keywords: Predictability, bad times, efficient market hypothesis, disagreement, rational

expectations.



1 Introduction

There is evidence that past returns (Cujean and Hasler, 2017), news (Garcia, 2013), macro

variables (Rapach et al., 2010; Henkel et al., 2011; Dangl and Halling, 2012), and analyst

disagreement (Cen et al., 2016; Loh and Stulz, 2018), for example, are better return

forecasters in bad times than in good times. The question is then, as posed by Cujean and

Hasler (2017): “Why does return predictability [and analyst disagreement] concentrate in

bad times?”

One possible answer, offered by Cujean and Hasler (2017) is, in summary, that a group

of investors repeatedly uses the same wrong “model of fundamentals”. This group coexists

with another, which always uses the correct model. The mistakes of the first group are large

enough to create market equilibrium “mispricing”. However, the arbitrage opportunities

between the two groups are never exploited; they generate return predictability instead.

The mistakes of the first group are such that the two groups disagree, especially in bad times.

Therefore, the explanation is consistent with both disagreement and predictability increasing

in bad times.1 The theory is also consistent with time series momentum (Moskowitz et al.,

2012) because predictability based on past returns, in particular, also increases in bad

times.

The present paper offers an alternative theoretical answer to the same question posed

by Cujean and Hasler (2017). Like Cujean and Hasler (2017), I demonstrate that stock

return predictability and disagreement theoretically increase in bad times. This includes

predictability based on past returns – time-series momentum – as a special case. Unlike

Cujean and Hasler (2017), I do so within a general risk-based asset pricing framework with

rational expectations, in the sense of Muth (1961) and Lucas (1972), and no arbitrage (nor

violations of the law of one price). In particular, fully rational agents use the same correct

1 Similar theories rely on other unobservable variables, apart from the models of fundamentals used by
the investors. For example, the information content of economic signals (Veldkamp, 2005; Van Nieuwerburgh
and Veldkamp, 2010), the fraction of noise traders (Chalkley and Lee, 1998), and the incorporation of news
into stock prices (McQueen and Roley, 1993; Boyd et al., 2005) could all vary with the business cycle.
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“model of fundamentals” at every point in time (potentially based on different information

sets).

I start by showing, in Section 2, that predictability increases in bad times. I impose

almost no restrictions on the economy apart from no arbitrage, so that a unique stochastic

discount factor (SDF) on the space of traded assets exists. The price of risk varies over

time; “bad times” correspond to a high price of risk. In addition, the price of risk does not

become relatively less volatile when it rises; the coefficient of variation does not decrease

in bad times. Within this framework, only proxies for risk (and) or price of risk forecast

returns. Past returns – responsible for time series momentum – must be one of these proxies,

as in de Oliveira Souza (2019a), for example. The proxies are linear on their respective

unobservable parameters, with possibly random coefficients.2 This allows for unexpected

structural breaks (Lettau and Van Nieuwerburgh, 2008).

With no further assumptions, predictability increases in bad times, as I formally demon-

strate. Return predictability, given by the R2 of the predictive regressions, increases for

models based on either risk or price of risk proxies in these states. There is a common

economic explanation for the results involving both proxies: Risk premiums increase with

the price of risk; they become a larger fraction of total returns relative to noise. Both risk

and price of risk proxies forecast risk premiums. Noise, by definition, is unforecastable.

Hence, the forecastable portion of returns increases with the price of risk. For price of risk

proxies, in particular, a second similar effect reinforces the one just described: The fraction

of the proxy determined by the unobservable price of risk also increases relative to the one

determined by noise (“measurement error”) when the price of risk increases. Changes in

the proxy become more informative about changes in the price of risk when the variation

in the price of risk is larger.

Section 2.3 shows that no further assumptions are needed to explain why “disagreement”

about future dividends (payoffs in general) increases in bad times if analysts report quasi risk

2I do not model systematic changes in the link between individual proxies and the parameter that they
capture because, in general, the link can strengthen with the price of risk, as in de Oliveira Souza (2019e), or
not, as in de Oliveira Souza (2019a). Hence, this type of detailed analysis can only be made for individual
proxies, and not for answering why predictability varies in general.
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neutral expectations in surveys. Individual analysts condition their rational expectations

on incomplete information sets to determine the future state of the economy. In this

case, the law of total variance implies that the dispersion in conditional expectations

increases with the volatility of the discounted dividend process. A larger market price of

risk corresponds to larger state price volatility and to a more volatile discounted dividend

process as a consequence. This explains why the dispersion in surveys of (quasi) risk neutral

expectations increases in bad times when the volatility of the underlying dividend process

remains constant. It is purely a “discount rate” (Cochrane, 2011) effect.

Section 3 shows how the dispersion of forecasts can increase in bad times even if analysts

report real expectations in surveys. Under this assumption, the dispersion in conditional

(rational) expectations of dividends can only increase in bad times if the underlying dividend

process becomes more volatile in bad times. The section shows that this happens – within

a standard consumption-based asset pricing framework – as long as the risk aversion of the

representative agent does not increase in recessions. In this case, the price of risk can only

increase if consumption becomes more volatile.3 Larger consumption volatility corresponds

to larger dividend volatility since both are related to the state of the economy. Hence,

analyst disagreement increases in bad times, when dividend and consumption volatilities

(and the price of risk) are high.

3This is in line with the empirical evidence for consumption expenditure in Boguth and Kuehn (2013),
Tédongap (2015), and Bansal et al. (2016), for example. In addition, De Oliveira Souza (2019d) shows
in a standard time-separable power utility framework that short run voluntary consumption is also highly
heteroskedastic.
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1.1 Related literature and contribution

In terms of purpose, Cujean and Hasler (2017) is the closest related paper in the literature.

Both papers provide theoretical answers to the same research questions, based on different

assumptions. The main distinction is the assumption of rational expectations and no

arbitrage in the present paper, which is inconsistent with the assumptions in Cujean and

Hasler (2017).

By extension, the present paper also relates to the heterogeneous beliefs literature cited

by Cujean and Hasler (2017) and to the literature on (analyst) disagreement more generally,

as in Ottaviani and Sorensen (2015), Sadka and Scherbina (2007), Anderson et al. (2005),

or Banerjee and Kremer (2010), for example. Its main contribution with respect to this

literature is to explain how disagreement arises within a rational expectations framework.

The paper also relates to a large literature on time-varying predictability and time-

varying coefficients in return forecasting regressions in general. Examples of this literature

are Pyun (2019), Cassella and Gulen (2018), Henkel et al. (2011), Dangl and Halling

(2012), Paye (2012), Pettenuzzo et al. (2014), and Johannes et al. (2014). The contribution

in this case is to provide an explanation for these empirical results that does not require

the assumption of agent irrationality.

Finally, the paper relates to traditional risk-based asset pricing models that allow for

time variation in the price of risk. Cochrane (2011, 2017) discusses several of these models.

The contribution to this literature is to explain that variations in the price of risk (for any

reason) imply variations in return predictability. The paper also relates to the discussion

about whether analysts answer surveys with risk neutral probabilities (Cochrane, 2017), or

not (Adam et al., 2018).
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2 A general risk-based asset pricing framework

Let ζ = (ζt) be the unique stochastic discount factor (SDF) that follows the continuous-time

stochastic process

dζt = −ζt

�

r f ,t d t +λt dzt

�

, (1)

where dzt is a one-dimensional standard Brownian motion without loss of generality (Roll,

1977), and the stochastic processes, r f
t and λt , are the risk free rate and the market price

of risk, respectively. This formulation imposes almost no restrictions on the asset pricing

model, apart from no arbitrage (including the law of one price).

Let the price of asset i, Pi = (Pi,t), follow the process

dPi,t = Pi,t

�

µi d t +σi,t dzt + σ̃i,t dz̃t

�

, (2)

where σi,t is a stochastic process representing the effective risk of the asset, dz̃t is another

one-dimensional standard Brownian motion independent of dzt , and σ̃i,t is a stochastic

process representing unpriced volatility.

It is possible to show that the equilibrium expected excess rate of return on this asset

(without intermediate dividends) is

µi,t − r f ,t = σi,tλt , (3)

which highlights that the premium depends on the risk of the asset, σi,t , and also on the

overall market price of risk, λt .

Let the mean of the price of risk process change over time, but with constant relative

variation. The variable is log normally distributed with time-varying mean, mt , and constant

variance, s2,

lnλt ∼ N
�

mt , s2
�

. (4)
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In this case, both the time t conditional expectation of the price of risk,

Et [λ] = exp
§

mt +
1
2

s2
ª

, (5)

and its conditional variance,

Vart (λ) = Et [λ]
2
�

exp
�

s2
	

− 1
�

, (6)

increase with the conditional mean parameter, mt , while the coefficient of variation remains

constant over time,

CVλ ≡
p

Vart(λ)
Et[λ]

=
Æ

exp {s2} − 1. (7)

2.1 The return forecasters

Eq. (3) implies that realized excess returns, in discrete time, are given by

Ri,t+1 − r f ,t = σi,tλt + ei,t+1, (8)

where ei,t+1 is an error term. For example, these shocks arise from changes in expected cash

flows or unexpected changes in the price of risk from one period to the next (assuming that

the risk of the asset,σi,t , remains constant). According to Eq. (3), only two variables forecast

returns: The price of risk, λt , and the risk of the asset, σi,t . I investigate predictability

based on both variables.

First, consider (linear) proxies for the price of risk, given by

Λt = aλ,t + bλ,tλt + eλ,t , (9)

where the coefficients aλ,t and bλ,t are possibly time-varying, and eλ,t is an error term.

The variables in this category are the ones typically used to predict the equity premium.

Examples include the aggregate dividend-price ratio (Campbell and Shiller, 1988a,b), the
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default and term spreads (Fama and French, 1989), the investment-capital ratio (Cochrane,

1991), and the consumption-wealth ratio (Lettau and Ludvigson, 2001).4 Although they

tend to be used to predict the equity premium, Eq. (8) shows that price of risk proxies also

forecast the returns on (all) individual stocks (de Oliveira Souza, 2019c,b).

Next, consider risk proxies given by

Σi,t = aσ,t + bσ,tσt + eσ,t , (10)

where the coefficients aσ,t and bσ,t can also vary over time and eσ,t is an error term. Risk

proxies are the ones typically related to the cross-section of asset returns. For stock returns

in particular, examples include the stocks’ estimated market betas (Sharpe, 1964; Lintner,

1965); the firm’s size, value, investment, or profitability (Fama and French, 2015); and

realized returns (Jegadeesh and Titman, 1993; de Oliveira Souza, 2019a).

Under the hypothesis that past returns are risk proxies (de Oliveira Souza, 2019a; Berk

et al., 1999), time series momentum (Moskowitz et al., 2012) should also increase in bad

times. This explains why time series momentum is stronger in bad times, for example

(Cujean and Hasler, 2017).

Without further assumptions, as I show next, predictability increases in bad times. In

addition, analyst disagreement also increases in bad times without further assumptions if

analysts use (quasi) risk neutral expectations to answer surveys. Section 3 later explains

how disagreement increases with the price of risk within a consumption-based asset pricing

framework even if analysts report physical expectations in surveys.

4Welch and Goyal (2008) list several others.
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2.2 Return predictability

Consider a general predictive regression for the return on asset i based on a given price of

risk proxy,

Ri,t+1 = αλ + βλΛt + εiλ,t+1, (11)

where the coefficients αλ and βλ are constants to be determined, and εiλ,t+1 is an error

term. The equivalent to Eq. (11), based on a risk proxy, is

Ri,t+1 = ασ + βσΣt + εiσ,t+1. (12)

“Return predictability” is given by the R2 (coefficient of determination) of the regressions.

For Eq. (11) and Eq. (12), R2 is equal to the square of the sample correlation in time series

between the asset returns and the proxy in question. We obtain R2
R,Λ and R2

R,Σ in Eq. (13)

and Eq. (14), respectively, for the predictive regressions based on the price of risk proxy in

Eq. (11) or based on the risk proxy in Eq. (12) as

R2
R,Λ = ρ

2
R,Λ =

�

Cov(Ri,Λ)
p

Var(Ri)
p

Var(Λ)

�2

, (13)

R2
R,Σ = ρ

2
R,Σ =

�

Cov(Ri,Σ)
p

Var(Ri)
p

Var(Σ)

�2

. (14)

As the sample size increases, the sample correlation converges to the population cor-

relation. Hence, it is possible to analyze predictability based on the population values

under the assumption of a large enough estimation sample. I do this by calculating the

variances and covariances in Eq. (13) and Eq. (14) based on the (population) description of

returns in Eq. (8), and the (population) description of the proxies in Eq. (9) and Eq. (10),

respectively.
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2.2.1 Return predictability with price of risk proxies

First, assume that the coefficients in Eq. (9) are constant over time, aλ,t = aλ and bλ,t = bλ.

Assume also that the risk of the asset in Eq. (8) is constant in the sample period used to

estimate the predictive regression in Eq. (11), σi,t = σi.

Under these assumptions, substituting Eq. (8) and Eq. (9) in Eq. (13) simplifies the

regression’s R2 to

R2
R,Λ =

�

σi bλVar(λ)
Æ

σ2
i Var(λ) + Var(ei)

Æ

b2
λ

Var(λ) + Var(eλ)

�2

. (15)

Next, let us re-write it as

R2
R,Λ =

(σi bλ)
2

�

σ2
i +

Var(ei)
Var(λ)

��

b2
λ
+

Var(eλ)
Var(λ)

� , (16)

which increases with the variance of the price of risk if the variance of the two error terms

remains constant, for example. Given that a larger mean of the price of risk in Eq. (4), mt ,

also implies larger variance in Eq. (6), the equation shows that predictability increases with

the price of risk (in “bad times”), holding all else constant.

Intuitively, two effects explain why predictability increases with the price of risk. First,

the relative fraction of returns that can be predicted, which is the first term in Eq. (8),

increases. Hence, predicting changes in the price of risk becomes more important to explain

returns. Second, the fraction of the price of risk proxy that measures the price of risk, given

by the middle term in Eq. (9), also increases relative to the noise in the measurement: A

larger part of the variation of the proxy over time is due to variation in the price of risk.

Hence, the proxy becomes more informative about the price of risk when the price of risk

increases. These two effects reinforce each other and predictability increases.

11



A little more algebra leads to the same conclusion if the proxy coefficients in Eq. (9) and

the risk of the asset in Eq. (8) vary independently over time. In this case, the regression’s

R2 in Eq. (13) becomes

R2
R,Λ =

�

E[σi] E[bλ] Var(λ)
p

Var(Ri)
p

Var(Λ)

�2

=
(E[σi] E[bλ])

2

Var(Ri)
Var(λ)

Var(Λ)
Var(λ)

, (17)

where both terms in the denominator decrease with the price of risk. The first term is

Var(Ri)
Var(λ)

=
Var(σi)Var(λ) + E[σi]2 Var(λ) + E[λ]2 Var(σi) + Var(ei)

Var(λ)
(18)

= Var(σi) + E[σi]
2 + CV−2

λ
Var(σi) +

Var(ei)
Var(λ)

, (19)

where the coefficient of variation, CVλ, is given by Eq. (7). The second term is

Var(Λ)
Var(λ)

=
Var(bλ)Var(λ) + E[bλ]2 Var(λ) + E[λ]2 Var(bλ) + Var(aλ + eλ)

Var(λ)
(20)

= Var(bλ) + E[bλ]
2 + CV−2

λ
Var(bλ) +

Var(aλ + eλ)
Var(λ)

. (21)

The economic intuition is the same for constant and random coefficients.

2.2.2 Return predictability with risk proxies

Let us now consider regressions using risk proxies instead of price of risk proxies. Again,

let us assume, first, that the coefficients in Eq. (10) are constant over time, aσ,t = aσ and

bσ,t = bσ. The price of risk in Eq. (8) is also constant in the sample used to estimate the

predictive regression in Eq. (12), λt = λ. Under these assumptions, substituting Eq. (8)

and Eq. (10) in Eq. (14) simplifies the regression’s R2 to

R2
R,Σ =

�

λ bσ Var(σi)
p

λ2 Var(σi) + Var(ei)
Æ

b2
σ

Var(σi) + Var(eσ)

�2

. (22)
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The equation can also be re-written as

R2
R,Σ =

(bσ Var(σi))
2

�

Var(σi) +
Var(ei)
λ2

�

�

b2
σ

Var(σi) + Var(eσ)
�

, (23)

which, all else being constant, increases with the price of risk, λ. This confirms that

predictability based on risk proxies also increases with the price of risk (in “bad times”).

The intuition of the result above is a little different from the one involving price of

risk proxies. The main difference is that there is only one channel for the increase in

predictability for risk proxies: The risk proxy does not become more informative about the

risk of the asset because the fraction of the risk proxy that measures risk, the middle term

in Eq. (10), is independent of the price of risk. This contrasts with the result involving the

price of risk proxy. However, the relative fraction of returns that can be predicted, the first

term in Eq. (8), still increases with the price of risk, as mentioned earlier. Hence, predicting

changes in risk (not only changes in the price of risk) becomes more important to explain

returns in this case. This explains why predictability based on risk proxies also increases in

bad times.

A little more algebra shows, again, that these conclusions hold if the proxy coefficients

in Eq. (10) and the price of risk in Eq. (8) vary independently over time. In this case, the

regression’s R2 in Eq. (14) becomes

R2
R,Σ =

�

E[λ] E[bσ] Var(σi)
p

Var(Ri)
p

Var(Σ)

�2

=
(E[bσ] Var(σi))

2

Var(Ri)
E[λ]2

Var(Σ)
, (24)

where the first term in the denominator decreases with the price of risk, while the other

remains constant. The first term is

Var(Ri)
E[λ]2

=
Var(σi)Var(λ) + E[σi]2 Var(λ) + E[λ]2 Var(σi) + Var(ei)

E[λ]2
(25)

= CV 2
λ

�

Var(σi) + E[σi]
2
�

+ Var(σi) +
Var(ei)
E[λ]2

, (26)
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where the coefficient of variation, CVλ, is given by Eq. (7).

2.3 Disagreement in surveys of (quasi) risk neutral expectations

Cochrane (2011, 2017) explains that analysts seem to report risk neutral expectations

in surveys. This section shows that “disagreement”, given by the dispersion in analyst

answers to surveys about future payoffs (dividends), increases with the price of risk in this

case. This conclusion holds whether analysts report risk neutral expectations in a strict

sense or whether they use a different (and possibly time-varying) rate to discount their

expectations. For example, Adam et al. (2018) argue that agents do not report exact risk

neutral probabilities: The expected returns reported in surveys are systematically larger

than the risk-free rate. However, the conclusions that I present hold regardless of the actual

rate used to discount expectations. It is only important that the expectation contains a risk

adjustment.

Assume that analysts answer surveys based on risk neutral expectations, EQ. They do so

based on signals, Ω, about the future state of the economy. Without loss of generality, the

risk-free rate is zero.5 Hence, a given analyst reports his expectation of a future dividend

payment, Dt+1, conditioned on signal Ω = ω as

EQ [Dt+1 | Ω = ω] = E [ζt+1 Dt+1 | Ω = ω] = ζω,t+1Dω,t+1, (28)

where ζω,t+1 and Dω,t+1 are, respectively, the SDF and the dividend payment in state ω.

Individual analysts only have access to partial information. But they process this infor-

mation perfectly: All forecasts are unbiased given the signal on which they are conditioned.

5We can change the probability measure to (possibly) generate a risk-neutral expectation, similar to
Eq. (28), as

Pt = E [ζt+1 Dt+1] =
EQ [Dt+1]

1+ r̃t
, (27)

where EQ [] is (strictly) the risk neutral expectation if the expected value EQ [Dt+1] is discounted at the risk-
free rate, r̃t = r f . A different discount rate, r̃t > r f (Adam et al., 2018), simply multiplies the expectation
by a different constant. It has no impact on the cross-sectional analysis that follows. Thus, I use r̃t = 0 for
simplicity.
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In addition, the distribution of signals among the analysts reflects the true probabilities of

each state. Hence, the analysts are also collectively correct in their expectations about the

(discounted) dividend payment, which is always equal to the price of the asset,

Pt = E [E [ζt+1 Dt+1 | Ω]] = E [ζt+1 Dt+1] . (29)

For example, this implies that prices reflect all available information at every point in time

or, equivalently, that there is no “mispricing”.

We can now use the law of total variance to analyze the dispersion in analyst forecasts

in Eq. (28). Without the t + 1 subscripts to save on notation, we obtain

Var
�

EQ [D | Ω]
�

= Var (E[ζD | Ω]) (30)

= Var (ζD)− E [Var (ζD | Ω)] , (31)

where Var (ζD | Ω) denotes the variance of the discounted dividend conditioned on signal

Ω. This conditional variance is zero for every (constant) forecast,

Var (ζω Dω | Ω = ω) = 0 ∀Ω, (32)

under the assumption that the signal Ω determines a given state of the economy, ω, as

shown in Eq. (28). Hence, Eq. (31) reduces to

Var
�

EQ[D | Ω]
�

= Var (ζD) , (33)

which establishes that analyst “disagreement”, given by the variance of their conditional

(risk neutral) expectations about dividends (on the left-hand side) is simply equal to the

variance of discounted dividends (on the right-hand side).
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2.3.1 Disagreement in surveys of risk neutral expectations in bad times

The price of risk, λt in Eq. (1), increases and the SDF, ζt , becomes more volatile in bad

times. In order to represent this change, let the SDF in bad times, ζh, be a mean preserving

spread of the SDF in good times, ζl ,

ζh = ζl + z, (34)

where z is a random variable with zero mean, positive variance, and orthogonal to the SDF,

ζ, and to dividends, D,

E [z] = 0, Var (z) > 0, z ⊥ ζ, z ⊥ D. (35)

In this formulation, the SDF has constant mean but larger variance in bad times, so I focus

on changes in risk premiums,

Var (ζh) = Var (ζl) + Var (z) , (36)

E [ζh] = E [ζl] . (37)

The dispersion in analyst forecasts in bad times, equivalent to Eq. (33), is given by

Var
�

EQ,h [D | Ω]
�

= Var (ζh D) = Var (ζl D) + Var (z D) , (38)
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where the second equality comes from Eq. (34) and Eq. (35).6 Finally, substitute Eq. (33)

in Eq. (38) for ζl ,

Var
�

EQ,h[D | Ω]
�

= Var
�

EQ,l[D | Ω]
�

+ Var( z D ), (42)

where EQ,l [D | Ω] is the dispersion in conditional analyst expectations of dividends in good

times. This equation shows that analyst forecasts are more dispersed when the price of risk

increases.

3 Consumption-based asset pricing and disagreement

This section explains that analyst disagreement also increases in bad times within a general

consumption-based asset pricing framework with heteroskedastic consumption. Boguth

and Kuehn (2013), Tédongap (2015), and Bansal et al. (2016), for example, provide

evidence of time-varying consumption expenditure volatility. De Oliveira Souza (2019d)

shows that short run voluntary consumption is also highly heteroskedastic, based on a

standard time-separable power utility framework. Disagreement increases with the price of

risk in proportion to consumption volatility, even if analysts report expected values using

real probabilities in this case.

6The covariance term is zero because the variable z has mean zero and it is orthogonal to the other
variables:

Cov(ζl D, zD) = E[ζl D zD]− E[ζl D]E[zD], (39)

where both terms on the right-hand side are zero according to Eq. (35):

E[ζl D zD] = Cov
�

ζl D
2, z

�

+ E
�

ζl D
2
�

E [z] = 0, (40)

E[ζl D]E[zD] = E[ζl D] (Cov(z, D) + E[z]E[D]) = 0. (41)
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3.1 A standard endowment economy

The representative agent chooses consumption, c = (ct), to maximize his time-separable

expected utility,

max
c=(ct )

E

�

∫ T

0

e−δtu(ct)

�

, (43)

subject to the budget constraint

E

�

∫ T

0

ζt ct d t

�

≤ E

�

∫ T

0

ζt et d t

�

, (44)

where the right-hand side is the present value of the endowment process, e = (et), and the

left-hand side is the present value of consumption, c. This optimization induces the SDF

ζt = e−δt u′(ct)
u′(c0)

. (45)

For a given diffusion process for equilibrium consumption,

dct = ct

�

µc,t d t +σc,t dzt

�

, (46)

an application of Itô’s lemma based on Eq. (45) gives the standard consumption-based SDF

dynamics corresponding to Eq. (1) (without specifying the drift term),

dζt = −ζt

�

r f ,t d t + γ(ct)σc,t dzt

�

, (47)

where the market price of risk is the risk aversion coefficient for the utility function, γ(ct),

multiplied by consumption volatility, λt = γ(ct)σc,t . Under this formulation, the price of

risk can increase if either risk aversion or consumption volatility increases. In this section,

I assume that risk aversion remains constant over time. Therefore, the price of risk only

changes with consumption volatility.
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3.2 Dividends and aggregate consumption

Let the dividends of firm i, Di, be a share of aggregate consumption, hi, such that

Di,t = ct hi,t , (48)

with hi,t following the diffusion

dhi,t = hi,t

�

µhi,t d t +σhi,t dzh,t

�

, (49)

where µhi,t and σhi,t are stochastic processes, and dzh,t is a standard Brownian motion

independent of dzt . Given the consumption process in Eq. (46), these two equations imply

that dividends, Di, follow the diffusion

dDi,t = Di,t

��

µc,t +µhi,t

�

d t +σc,t dzt +σhi,t dzh,t

�

. (50)

Intuitively, this equation shows that individual firms tend to generate more cash flows

when the aggregate economy is doing well, and vice versa. In fact, it is this positive

covariance with aggregate consumption that makes stocks risky. Firms in stable growth, for

example, are the ones with zero drift in Eq. (49). The equation also shows that dividend

volatility has two sources: Idiosyncratic firm volatility, given by shocks to the firm’s market

share, σhi,t , and systematic shocks, σc,t . This formulation is also consistent with, for

example, the impact that aggregate shocks have on firm output (Bloom, 2009).

3.3 Disagreement in surveys of real expectations

Let analysts now answer surveys based on real probabilities. They continue to do so

based on signals, Ω, about the future state of the economy. Hence, the analyst reports his

expectation of a future dividend payment, Dt+1, conditioned on signal Ω = ω as

E [Dt+1 | Ω = ω] = Dω,t+1. (51)
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The distribution of signals among the analysts follows the true state probabilities,

E [E [Dt+1 | Ω]] = E [Dt+1] , (52)

which implies that the analysts are collectively correct about expected dividends. The indi-

vidual forecasts are fully rational and unbiased, conditioned on the analyst’s (incomplete)

information set, Ω.

We can use the law of total variance again to analyze the dispersion in analyst forecasts

(without the t + 1 subscripts),

Var (E [D | Ω]) = Var (D)− E [Var (D | Ω)] , (53)

where Var (D | Ω) is the variance of the dividend conditioned on the signal Ω. This variance

is zero for every forecast,

Var (Dω | Ω = ω) = 0 ∀Ω, (54)

under the assumption that Ω determines a given state of the economy, ω, as shown in

Eq. (51), so that the conditional dividend is a constant. Hence, Eq. (53) reduces to

Var (E [D | Ω]) = Var (D) , (55)

which is similar to Eq. (33) and establishes that analyst disagreement, given by the variance

in conditional dividend expectations (on the left-hand side) is proportional to the conditional

volatility of the dividend process in Eq. (50) (on the right-hand side).

Disagreement increases in bad times: In bad times, the price of risk, λt , increases.

Under the assumption that risk aversion, γ(ct), remains constant, this must correspond

to an increase in consumption volatility, σc,t according to Eq. (47). A larger consumption

volatility also increases the volatility of the dividend process in Eq. (50). As a consequence,

the dispersion in analyst forecasts increases according to Eq. (55). This explains why
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analyst disagreement increases in bad times even if they answer surveys based on real

expectations.

4 Conclusion

In this paper we learn that predictability, including predictability based on past returns,

increases in bad times within a very general risk-based asset pricing framework. We also

learn that analyst responses to surveys about future payoffs become more dispersed in

the same periods, under the hypothesis that their answers reflect risk neutral (rational)

expectations based on partial information.

Under the alternative hypothesis that analysts report real (rational) expectations, we

learn that disagreement also increases within a standard consumption-based asset pricing

framework in which the representative agent has constant risk aversion over time.

In summary, we learn that none of these empirical patterns can be regarded as evidence

against the rational expectations paradigm, the efficient market hypothesis, or risk-based

asset pricing theories.
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