Skip to main content

Machine learning with sports and health data - Introduction and practical implementation in R

Course description

Over the last five to ten years machine learning (ML) methods has gained widespread use with both sports and health data. ML methods can be used with both accelerometry or heart rate data for health or sports purposes or for simple clinical studies to find important patterns in the data. The possibilities seem almost endless. An important strength of the ML methods is that it can model highly complex data, which is common attribute of most sports and health data. However, the introduction of engines like the ChatGPT or Bard also suggests that understanding the strengths and weaknesses of this branch of statistical methods is important to disseminate quality health and physiological information from the sports and health data. 

Expected learning outcomes 

The present course will cover both unsupervised and supervised learning. Within unsupervised methods the focus is on principal component analysis and clustering, whereas with supervised methods we will cover both classification and numerical prediction using methods like decision trees and neural networks. The course will be highly practical, and you will get hands-on experience with model selection, learning, tuning and evaluating performance and generalizability. All work will be done using R. Prior experience in R is not required but would facilitate learning experience.

Teaching methods

A mixture of lectures, group assignments, workshops and student presentations

Price

The course is free of charge for PhD students enrolled at the Faculty of Health Sciences at SDU and for PhD students enrolled at other universities that have joined the Open Market agreement and/ or the NorDoc agreement. 

The course fee for other participants is:

DKK 2.700

EUR 361

Graduate Programme

Physical Activity and Musculoskeletal Health

Course director:

Jan Christian Brønd

Venue

SDU, Odense

ECTS credits

2,4 ECTS

Register for this course

Sign up here!

The PhD programme Faculty of Health Sciences University of Southern Denmark

  • Campusvej 55
  • Odense M - DK-5230
  • Phone: 6550 4949

Last Updated 31.10.2024