Project Description
The refrigerant in such a device is a solid magnetic material whose temperature increases when magnetised and decreases when demagnetised. The use of solid-state active regenerator technology has several advantages compared to traditional vapour-compression heat pumps, including high energy efficiency, quiet operation, and a lack of toxic or greenhouse contributing gases. Also, the heat transfer fluid within the device can be pumped throughout the entire circuit, obviating the need for the secondary circuits and associated heat exchangers and pumps found in conventional “ground source” heat pumps.
However, if magnetocaloric heat pumps are to be realised, a number of issues must be solved, drawing on a complex interplay between several scientific fields. The key scientific challenges will be characterisation and optimisation of materials for use in the device, development of novel algorithms for modelling optimal hybrid magnet designs combining permanent magnets and electromagnets, as well as efficient regenerator design for high heat transfer performance with low pressure. Optimal system operation and integration into buildings will also be addressed.
Project Summary
Project Period | January 1. 2013 to December 31. 2017 |
Total budget | 22.110.000 DKK |
Funding agency | Innovation Fund Denmark |
Organization managing the project | Danmarks Tekniske Universitet |
SDU project manager | Christian Veje |
Additional partners |
- Aalborg University - Imperial College London - University of Ljubljana - University of Wisconsin-Madison - Technoflex - Alpcon - Vacuumschmelze - BSH Bosch und Siemens Hausge |